E-Book Content
I
The Origin of Living Things Unraveling the Mystery of How Geckos Defy Gravity Science is most fun when it tickles your imagination. This is particularly true when you see something your common sense tells you just can’t be true. Imagine, for example, you are lying on a bed in a tropical hotel room. A little lizard, a blue gecko about the size of a toothbrush, walks up the wall beside you and upside down across the ceiling, stopping for a few moments over your head to look down at you, and then trots over to the far wall and down. There is nothing at all unusual in what you have just imagined. Geckos are famous for strolling up walls in this fashion. How do geckos perform this gripping feat? Investigators have puzzled over the adhesive properties of geckos for decades. What force prevents gravity from dropping the gecko on your nose? The most reasonable hypothesis seemed suction— salamanders’ feet form suction cups that let them climb walls, so maybe geckos’ do too. The way to test this is to see if the feet adhere in a vacuum, with no air to create suction. Salamander feet don’t, but gecko feet do. It’s not suction. How about friction? Cockroaches climb using tiny hooks that grapple onto irregularities in the surface, much as rockclimbers use crampons. Geckos, however, happily run up walls of smooth polished glass that no cockroach can climb. It’s not friction. Electrostatic attraction? Clothes in a dryer stick together because of electrical charges created by their rubbing together. You can stop this by adding a “static remover” like a Cling-free sheet that is heavily ionized. But a gecko’s feet still adhere in ionized air. It’s not electrostatic attraction. Could it be glue? Many insects use adhesive secretions from glands in their feet to aid climbing. But there are no glands cells in the feet of a gecko, no secreted chemicals, no footprints left behind. It’s not glue. There is one t