Biofertilizer Manual
By FNCA Biofertilizer Project Group
Forum for Nuclear Cooperation in Asia (FNCA) March 2006
Published, 2006 All parts of this publication may be quoted by indication the credit title of the document/photo. ISBN4-88911-301-0 C0550 Published by Japan Atomic Industrial Forum (JAIF) Sponsored by Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan For further information, please contact: FNCA Coordinator Office in Japan Asia Cooperation Center, Japan Atomic Industrial Forum (JAIF) 2-1-3, Shimbashi, Minato-ku, Tokyo 105-8605 Japan TEL. :( +81)3-6812-7104 FAX. :( +81)3-6812-7110 Email:
[email protected] FNCA Website: http://www.fnca.jp/english/index.html
Cover photographs (clockwise, from left to right): 1) ‘BIO-N’, an Azospirillum based biofertilizer manufactured by BIOTECH and used for corn in the Philippines 2) Groundnut demonstrated by the field test in Vinh Puc Province, Vietnam Agriculture Science Institute, Viet Nam (left: without biofertilizer, right: with biofertilizer) 3) The field demonstration of biofertilizer for corn at Muara Field Station, Department of Agriculture, Bogor, West Java, Indonesia Photo credits: 1) BIOTECH, U.P.L.B College, the Philippines; 2) Japan Atomic Industrial Forum, Japan; 3) Ms. Soertini Gandanegara, National Nuclear Energy Agency (BATAN), Indonesia
ii
Preface to Manual on Biofertilizer Production and Application by Dr. Sueo Machi, the FNCA Coordinator of Japan The proper feeding of the rapidly growing populations in developing countries is the most important challenge for mankind. Presently, about 800 million people in the world are suffering from chronic malnutrition due to shortage of suitable foods. In this context, improving agriculture to increase yield of crops without deteriorating the environment should be an ultimate goal. Continuous and excess use of chemical fertilizers and other agrochemicals to increase yield may lead to ground water contamination and depletion of soil nutrients, eventually resulting in reduction of crop yield. Biofertilizers from microorganisms can replace chemical fertilizers to increase crop production. In principle, biofertilizers are less expensive and are more environmentally-friendly than chemical fertilizers. In the Forum for Nuclear Cooperation in Asia (FNCA) project on “Biofertilizer”, experts from member countries cooperate through exchange of experiences and information including showing field demonstration on biofertilizers for a variety of crops. In the production of biofertilizer, radiation processing has been tested and proposed for sterilization of carriers for the biofertilizer microorganisms. Ionizing radiation from existing irradiation facilities in member countries should be able to provide a simple, reliable and less expensive method to sterilize carriers. The stable isotope of nitrogen, N-15, can be effectively utilized as a tracer to accurately quantify the efficiency of biofertilizer microorganisms such as Rhizobium to fix atmospheric nitrogen. This may be extended to other suitable isotopes for other major plant nutrients. I am confident that this manual is useful for the extension of biofertilizer usage to a large number of farmers for improvement of crop yield and other benefits, while minimizing environmental pollution from agrochemical inputs.
iii
Acknowledgments This manual is written for scientists and technicians involved in biofertilizer research, production and application in FNCA member countries.
We would like to
thank the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and respective Ministries or Agencies of China, Indonesia, Korea, Malaysia, the Philippines, Thailand and Viet