A First Course In Modular Forms

Preparing link to download Please wait... Download

E-Book Overview

This book introduces the theory of modular forms with an eye toward the Modularity Theorem:

All rational elliptic curves arise from modular forms.

The topics covered include

* elliptic curves as complex tori and as algebraic curves,

* modular curves as Riemann surfaces and as algebraic curves,

* Hecke operators and Atkin--Lehner theory,

* Hecke eigenforms and their arithmetic properties,

* the Jacobians of modular curves and the Abelian varieties

associated to Hecke eigenforms,

* elliptic and modular curves modulo~$p$ and the Eichler--Shimura

Relation,

* the Galois representations associated to elliptic curves

and to Hecke eigenforms.

As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory.

A First Course in Modular Forms is written for beginning graduate students and advanced undergraduates. It does not require background in algebraic number theory or algebraic geometry, and it contains exercises throughout.

Fred Diamond received his Ph.D from Princeton University in 1988 under the direction of Andrew Wiles and now teaches at Brandeis University. Jerry Shurman received his Ph.D from Princeton University in 1988 under the direction of Goro Shimura and now teaches at Reed College.


E-Book Content

Graduate Texts in Mathematics 228 Editorial Board S. Axler F.W. Gehring K.A. Ribet Graduate Texts in Mathematics 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 TAKEUTI/ZARING. Introduction to Axiomatic Set Theory. 2nd ed. OXTOBY. Measure and Category. 2nd ed. SCHAEFER. Topological Vector Spaces. 2nd ed. HILTON/STAMMBACH. A Course in Homological Algebra. 2nd ed. MAC LANE. Categories for