E-Book Overview
Laser-enabled measurements are valuable tools for the investigation of surfaces and interfaces or for the in situ investigation of interfacial processes including electrode processes. The understanding of the thermodynamics of solid/liquid surfaces is important for surface science and electrochemistry. In the first part of this book, the authors describe a range of techniques for investigating interfacial tension and surface stress, which is important for coatings, thin films, and fuel cells. The techniques covered comprise bending beam (bending plate, bending cantilever, wafer curvature) methods with different detection techniques. Special attention is given to methods using optical detection by laser beam deflection or interferometry. The second part is devoted to the techniques based on the detection of refractive index gradients in the solution. The refractive index changes could be related to concentration gradients (Probe Beam Deflection, PBD) or light-induced thermal gradients (Photothermal Deflection Spectroscopy, PDS). The application of the techniques to surface-confined and solution electrochemical systems is described. Subsequently, a comparison with others techniques able to monitor ion fluxes is performed.
E-Book Content
Laser Techniques for the Study of Electrode Processes Monographs in Electrochemistry Surprisingly, a large number of important topics in electrochemistry is not covered by up-to-date monographs and series on the market, some topics are even not covered at all. The series Monographs in Electrochemistry fills this gap by publishing indepth monographs written by experienced and distinguished electrochemists, covering both theory and applications. The focus is set on existing as well as emerging methods for researchers, engineers, and practitioners active in the many and often interdisciplinary fields, where electrochemistry plays a key role. These fields will range – among others – from analytical and environmental sciences to sensors, materials sciences and biochemical research. Information about published and forthcoming volumes is available at http://www.springer.com/series/7386 Series Editor: Fritz Scholz, University of Greifswald, Germany Gy€ oz€ o G. La´ng Cesar A. Barbero Laser Techniques for the Study of Electrode Processes Gy€oz€o G. La´ng E€ otv€os Lora´nd University Inst. Chemistry Pa´zma´ny Pe´ter S. 1/A Budapest Hungary Cesar A. Barbero Universidad Nacional de Rio Cuarto Chemistry Department Rio Cuarto Co´rdoba Argentina ISSN 1865-1836 e-ISSN 1865-1844 ISBN 978-3-642-27650-7 e-ISBN 978-3-642-27651-4 DOI 10.1007/978-3-642-27651-4 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2012935872 # Springer-Verlag Berlin Heidelberg 2012 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface For the study of electrode processes, the application of lasers has proved to be very su