E-Book Content
Essentials of Process Control
McGraw-Hill Chemical Engineering Series Editorial Advisory Board James J. Cat-berry, Pro~ssor of Cltc~tttiutl Ett,qitwcrittg, iJttil~cr.si!\~ of No,rc I~rrttw James R. Fair, Professor of Cltctttical Engitwcrittg, Univcrsi~y of l?.w.s, Austitt Eduardo D. Glandt, Prof~~ssor ~~/‘Cltcmitul Ettgittwrittg, Utriv~r.si!\~ (?f Pottt.s~~I~Vtttitr Michael T. Klein, Prof~~ssot- o~‘Chcttric~tl Ettgirtwrittg, Utti\~c~rsity of’l~c~lttwtrc Matthew Tirrell, Profc~s.sor of Chcttticai Ettgitrwrittg, Utti\rt-.sity of‘Mitmc.sortr
Emeritus Advisory Board Max S. Peters, Retired Professor of Chemical Engineerittg, Univer.sity of Colorado William P. Schowalter, Dean, School of Engineering, University of 1Ilinoi.s James Wei, Dean, School (?f’Engineering, Prittceton University .
Building the Literature of a Profession Fifteen prominent chemical engineers first met in New York more than 60 years ago to plan a continuing literature for their rapidly growing profession. From industry came such pioneer practitioners as Leo H. Baekeland, Arthur D. Little, Charles L. Reese, John V. N. Dorr, M. C. Whitaker, and R. S. McBride. From the universities came such eminent educatdrs as William H. Walker, Alfred H. White, D. D. Jackson, J. H. James, Warren K. Lewis, and Harry A. Curtis. H. C. Parmelee, then editor of Chemical and Metallurgical Engineering, served as chairman and was joined subsequently by S. D. Kirkpatrick as consulting editor. After several meetings, this committee submitted its report to the McGraw-Hill Book Company in September 1925. In the report were detailed specifications for a correlated series of more than a dozen texts and reference books which have since become the McGraw-Hill Series in Chemical Engineering and which became the cornerstone of the chemical engineering curriculum. From this beginning there has evolved a series of texts surpassing by far the scope and longevity envisioned by the founding Editorial Board. The McGraw-Hill Series in Chemical Engineering stands as a unique historical record of the development of chemical engineering education and practice. In the series one finds the milestones of the subject’s evolution: industrial chemistry, stoichiometry, unit operations and processes, thermodynamics, kinetics, and transfer operations. Chemical engineering is a dynamic profession, and its literature continues to evolve. McGraw-Hill, with its editor B. J. Clark and its consulting editors, remains committed to a publishing policy that will serve, and indeed lead,. the needs of the chemical engineering profession during the years to come.
.-
.
The Series
‘P ;try i L. ties ;on, litor ned .Hill for a ;ince 2 the ir the I-Hill ievelIs the operues to :mains of the
Bailey and Oiiis: Biochcnlicul Ertgiwcrirrg l;rtrrtltrrilcrltlrls Bennett and Myers: Momentum, Heat, and Mass Transfer Brodkey and Hershey: Transport Phenomena: A Un$ed Approach Carberry: Chemical and Cutulytic Reaction Engineering Constantinides: Applied Numerical Methods with Personal Computers Coughanowr: Process Systems Analysis and Control de Nevers: Air Pollution Control Engineering de Nevers: Fluid Mechanics for Chemical Engineers Douglas: Conceptual Design of Chemical Processes Edgar and Himmelblau: Optimization of Chemical Processes Gates, Katzer, and Schuit: Chemistry of Catalytic Processes Holland: Fundamentals of Multicomponent Distillation Katz and Lee: Natural Gas Engineering: Production and Storage King: Separation Processes Lee: Fundamentals of Microelectronics Processing Luyben: Process Modeling, Simulation, and Control for Chemical Engineers Luyben and Luyben: Essentials of Process Control McCabe, Smith, and Harriott: Unit Operations of Chemical Engineering Marlin: Process Control: Designing Processes and Control Systems .for Dynamic Pe$ormance Middlemann and Hochberg: Process Engineer