Life At The Speed Of Light: From The Double Helix To The Dawn Of Digital Life

E-Book Overview

J. Craig Venter Life at the Speed of Light From the Double Helix to the Dawn of Digital Life Penguin Books (2014)

E-Book Content

ALSO BY J. CRAIG VENTER A Life Decoded VIKING Published by the Penguin Group Penguin Group (USA) LLC 375 Hudson Street New York, New York 10014 USA | Canada | UK | Ireland | Australia | New Zealand | India | South Africa | China penguin.com A Penguin Random House Company First published by Viking Penguin, a member of Penguin Group (USA) LLC, 2013 Copyright © 2013 by J. Craig Venter Penguin supports copyright. Copyright fuels creativity, encourages diverse voices, promotes free speech, and creates a vibrant culture. Thank you for buying an authorized edition of this book and for complying with copyright laws by not reproducing, scanning, or distributing any part of it in any form without permission. You are supporting writers and allowing Penguin to continue to publish books for every reader. LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA Venter, J. Craig. Life at the speed of light : from the double helix to the dawn of digital life / J. Craig Venter. pages cm Includes bibliographical references and index. ISBN 978-1-101-63802-6 1. Science—Social aspects. 2. Biology—Philosophy. 3. Artificial life. 4. Genomics. I. Title. Q175.5.V44 2013 303.48'3—dc23 2013017049 To the team that contributed to making the first synthetic cell a reality: Mikkel A. Algire, Nina Alperovich, Cynthia Andrews-Pfannkoch, Nacyra Assad-Garcia, Kevin C. Axelrod, Holly Baden-Tillson, Gwynedd A. Benders, Anushka Brownley, Christopher H. Calvey, William Carrera, RayYuan Chuang, Jainli Dai, Evgeniya A. Denisova, Tom Deernick, Mark Ellisman, Nico Enriquez, Robert Friedman, Daniel G. Gibson, John I. Glass, Jessica Hostetler, Clyde A. Hutchison III, Prabha Iyer, Radha Krishnakumar, Carole Lartigue, Matt Lewis, Li Ma, Mahir Maruf, Admasu Melanke, Chuck Merryman, Michael G. Montague, Monzia M. Moodie, Vladimir N. Noskov, Prashanth P. Parmar, Quang Phan, Rembert Pieper, Thomas H. SegallShapiro, Hamilton O. Smith, Timothy B. Stockwell, Lijie Sun, Granger Sutton, Yo Suzuki, David W. Thomas, Christopher E. Venter, Sanjay Vashee, Shibu Yooseph, Lei Young, and Jayshree Zaveri. Contents Also by J. Craig Venter Title Page Copyright Dedication 1 Dublin, 1943–2012 2 Chemical Synthesis as Proof 3 Dawn of the Digital Age of Biology 4 Digitizing Life 5 Synthetic Phi X 174 6 First Synthetic Genome 7 Converting One Species into Another 8 Synthesis of the M. mycoides Genome 9 Inside a Synthetic Cell 10 Life by Design 11 Biological Teleportation 12 Life at the Speed of Light Acknowledgments Notes Index 1 Dublin, 1943–2012 How can the events in space and time, which take place within the boundaries of a living organism, be accounted for by physics and chemistry? . . . The obvious inability of present-day physics and chemistry to account for such events is no reason at all for doubting that they will be accounted for by those sciences. —Erwin Schrödinger, What Is Life? (1944)1 “What is life?” Only three simple words, and yet out of them spins a universe of questions that are no less challenging. What precisely is it that separates the animate from the inanimate? What are the basic ingredients of life? Where did life first stir? How did the first organisms evolve? Is there life everywhere? To what extent is life scattered across the cosmos? If other kinds of creatures do exist on exoplanets, are they as intelligent as we are, or even more so? Today these questions about the nature and origins of life remain the biggest and most hotly debated in all of biology. The entire discipline depends on it, and though we are still groping for all the answers, we have made huge progress in the past decades toward addressing them. In fact, we have advanced this quest further in living memory
You might also like