E-Book Overview
This brief provides a complete yet concise description of modern dive computers and their operations to date in one source with coupled applications for added understanding. Basic diving principles are detailed with practical computer implementations. Interrelated topics to diving protocols and operational procedures are included. Tests, statistics and correlations of computer models with data are underscored. The exposition also links phase mechanics to dissolved gases in modern decompression theory with mathematical relationships and equations used in dive computer synthesis. Applications focus upon and mimic dive computer operations within model implementations for added understanding. This comprehensive resource includes a complete list of dive computers that are marketed and their staging models, as well as a complete list of diveware marketed and their staging algorithms, linkage of pertinent wet and dry tests to modern computer algorithms, a description of two basic computer models with all constants and parameters, mathematical ansatz of on-the-fly risk for surfacing at any dive depth, detailing of statistical techniques used to validate dive computers from data, and a description of profile Data Banks for computer dive model correlations. The book will find an audience amongst computer scientists, doctors, underwater researchers, engineers, physical and biosciences diving professionals, explorers, chamber technicians, physiologists and technical and recreational divers.
E-Book Content
SPRINGER BRIEFS IN COMPUTER SCIENCE
B. R. Wienke · T. R. O’Leary
Understanding Modern Dive Computers and Operation Protocols, Models, Tests, Data, Risk and Applications 1 23
SpringerBriefs in Computer Science Series editors Stan Zdonik, Brown University, Providence, Rhode Island, USA Shashi Shekhar, University of Minnesota, Minneapolis, Minnesota, USA Xindong Wu, University of Vermont, Burlington, Vermont, USA Lakhmi C. Jain, University of South Australia, Adelaide, South Australia, Australia David Padua, University of Illinois Urbana-Champaign, Urbana, Illinois, USA Xuemin Sherman Shen, University of Waterloo, Waterloo, Ontario, Canada Borko Furht, Florida Atlantic University, Boca Raton, Florida, USA V. S. Subrahmanian, University of Maryland, College Park, Maryland, USA Martial Hebert, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA Katsushi Ikeuchi, University of Tokyo, Tokyo, Japan Bruno Siciliano, Università di Napoli Federico II, Napoli, Italy Sushil Jajodia, George Mason University, Fairfax, Virginia, USA Newton Lee, Newton Lee Laboratories, LLC, Burbank, California, USA
SpringerBriefs present concise summaries of cutting-edge research and practical applications across a wide spectrum of fields. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic. Typical topics might include: • A timely report of state-of-the art analytical techniques • A bridge between new research results, as published in journal articles, and a contextual literature review • A snapshot of a hot or emerging topic • An in-depth case study or clinical example • A presentation of core concepts that students must understand in order to make independent contributions Briefs allow authors to present their ideas and readers to absorb them with minimal time investment. Briefs will be published as part of Springer’s eBook collection, with millions of users worldwide. In addition, Briefs will be available for individual print and electronic purchase. Briefs are characterized by fast, global electronic dissemination, standard publishing contracts, easy-to-use manuscript preparation and formatting guidelines, and expedited production schedules. We aim for publication 8–12 weeks after acceptance. Both solicited and unsolicited manuscripts are considered for p