E-Book Overview
Andrew Baker and a noted panel of expert investigators describe today's most powerful molecular methods for investigating the pathogenesis of vascular disease. These detailed, easy-to-follow techniques range from methods that have been used successfully to identify specific mutations involved in cardiovascular disorders, to those for transferring genes associated with cardiovascular disease into various vascular cell types by in vitro and in vivo routes. There are methods to identify novel genes and generate full-length cDNAs, to study gene transcription and promoter activity easily and effectively, and to ascertain precisely gene expression levels within the individual cell types in different pathophysiological conditions. Vascular Disease: Molecular Biology and Gene Therapy Protocols offers today's vascular biologist and gene therapist an unprecedented ability to study the pathogenesis of vascular disease and readily to probe the potential for gene-based therapies.
E-Book Content
Mutation Detection by PCR-SSCP Analysis
3
1 Detection of Mutations and DNA Polymorphisms in Genes Involved in Cardiovascular Diseases by Polymerase Chain Reaction–Single-Strand Conformation Polymorphism Analysis Shu Ye and Adriano M. Henney 1. Introduction Over the last 15 years, there has been remarkably rapid progress in defining the molecular basis of inherited disorders. Many disease genes (the majority of which are genes responsible for monogenic Mendelian diseases) have now been identified, predominately through linkage analysis and positional cloning approaches. With the continuing expansion in this research area, the number of genes to be screened for disease-causing mutations will continue to increase, especially as there are now worldwide efforts aiming to identify the gene lesions that contribute to complex diseases, such as hypertension, diabetes mellitus, and corona