E-Book Overview
Nuclear fusion has the potential to become the most important energy source of the new century. But still many problems, as e.g. the confinement of the plasma, are not yet solved. Thus they are subject to intense research which drives a rapid evolvement of this field of nuclear physics, and generates the need for an up-to-date textbook for graduate students.This state-of-the-art textbook assembles the material for a modern course, and is aimed at graduate and advanced undergraduate students. It both introduces the fundamental principles and theories of fusion plasma physics, and presents the most recent topics from various sources in a systematic and concise way. Each chapter is rounded off with a set of exercises.
E-Book Content
Weston M. Stacey Fusion Plasma Physics
Weston M. Stacey
Fusion Plasma Physics
Dr. Weston M. Stacey Georgia Institute of Technology Nuclear & Radiological Engineering and Medical Physics 900 Atlantic Drive, NW Atlanta, GA 30332-0425 USA
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Cover Picture DIII-D Tokamak, General Atomics, San Diego
Library of Congress Card No.: applied for British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at .
© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law. Printed in the Federal Republic of Germany Printed on acid-free paper Composition Da-TeX Gerd Blumenstein, Leipzig Printing betz-druck GmbH, Darmstadt Bookbinding Litges & Dopf Buchbinderei GmbH, Heppenheim ISBN-13: 978-3-527-40586-2 ISBN-10: 3-527-40586-0
Preface
The development of mankind’s ultimate energy source, thermonuclear fusion, is a compelling intellectual challenge for those involved and a matter of enormous importance for all. Progress to date has been hard won, but substantial. We have come a long way from the beginning of this quest in the middle of the past century and now stand on the threshold of significant power production. The temperatures of laboratory plasmas (the working gas of fusion) have been increased from the tens of thousands of degrees of the early fusion experiments to above solar temperatures and then to the hundreds of millions of degrees required for terrestrial fusion. The proximity to the conditions at which this temperature could be maintained indefinitely by the self-heating of the fusion event has been reduced from the factor of hundreds of thousands that characterized the early experiments to within less than a factor of ten. Tens of kilowatts of fusion power have been produced. The engineering design and R & D for the International Thermonuclear Experimental Reactor (ITER), which will produce hundreds of millions of watts, has been completed. The construction of ITER in France willl begin in the near future. This progress in fusion energy development has been based on an ever-expanding understanding of the physics of magnetically confine