Path Integrals In Quantum Mechanics, Statistics, Polymer Physics, And Financial Markets

Preparing link to download Please wait... Download

E-Book Overview

This is the fourth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r2 potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations.In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions.The powerful Feynman–Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals.Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory also applies now to small orders.Special attention is devoted to path integrals with topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern–Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect.The relevance of path integrals to financial markets is discussed, and improvements of the famous Black–Scholes formula for option prices are given which account for the fact that large market fluctuations occur much more frequently than in the commonly used Gaussian distributions.The author's other book on ‘Critical Properties of φ4 Theories’ gives a thorough introduction to the field of critical phenomena and develops new powerful resummation techniques for the extraction of physical results from the divergent perturbation expansions.

E-Book Content

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets Hagen Kleinert Professor of Physics Freie Universit¨at Berlin To Annemarie and Hagen II Nature alone knows what she wants. Goethe Preface The third edition of this book appeared in 2004 and was reprinted in the same year without improvements. The present fourth edition contains several extensions. Chapter 4 includes now semiclassical expansions of higher order. Chapter 8 offers an additional path integral formulation of spinning particles whose action contains a vector field and a Wess-Zumino term. From this, the Landau-Lifshitz equation for spin precession is derived which governs the behavior of quantum spin liquids. The path integral demonstrates that fermions can be described by Bose fields—the basis of Skyrmion theories. A further new section introduces the Berry phase, a useful tool to explain many interesti