Practical Soil Dynamics: Case Studies In Earthquake And Geotechnical Engineering

Preparing link to download Please wait... Download

E-Book Overview

The objective of this book is to fill some of the gaps in the existing engineering codes and standards related to soil dynamics, concerning issues in earthquake engineering and ground vibrations, by using formulas and hand calculators. The usefulness and accuracy of the simple analyses are demonstrated by their implementation to the case histories available in the literature. Ideally, the users of the volume will be able to comment on the analyses as well as provide more case histories of simple considerations by publishing their results in a number of international journals and conferences. The ultimate aim is to extend the existing codes and standards by adding new widely accepted analyses in engineering practice. The following topics have been considered in this volume: • main ground motion sources and properties • typical ground motions, recording, ground investigations and testing• soil properties used in simple analyses • fast sliding in non-liquefied soil• flow of liquefied sandy soil• massive retaining walls• slender retaining walls• shallow foundations• piled foundations• tunnels, vertical shafts and pipelines• ground vibration caused by industry.

Audience:This book is of interest to geotechnical engineers, engineering geologists, earthquake engineers and students.


E-Book Content

PRACTICAL SOIL DYNAMICS GEOTECHNICAL, GEOLOGICAL AND EARTHQUAKE ENGINEERING Volume 20 Series Editor Atilla Ansal, Kandilli Observatory and Earthquake Research Institute, Boˇgaziçi University, Istanbul, Turkey Editorial Advisory Board Julian Bommer, Imperial College London, U.K. Jonathan D. Bray, University of California, Berkeley, U.S.A. Kyriazis Pitilakis, Aristotle University of Thessaloniki, Greece Susumu Yasuda, Tokyo Denki University, Japan For further volumes: http://www.springer.com/series/6011 Practical Soil Dynamics Case Studies in Earthquake and Geotechnical Engineering by MILUTIN SRBULOV United Kingdom 123 Dr. Milutin Srbulov United Kingdom [email protected] ISSN 1573-6059 ISBN 978-94-007-1311-6 e-ISBN 978-94-007-1312-3 DOI 10.1007/978-94-007-1312-3 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2011928823 © Springer Science+Business Media B.V. 2011 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Every effort has been made to contact the copyright holders of the figures and maps which have been reproduced from other sources. Anyone who has not been properly credited is requested to contact the publishers, so that due acknowledgement may be made in subsequent editions. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Karl Terzaghi formally defined soil mechanics as a separate discipline by publishing his first book in 1925. Although soil mechanics involves soil statics and dynamics, only soil statics has become well established while soil dynamics remained in a rudimentary stage until recent developments in the field of earthquake engineering. Geotechnical earthquake engineering is formally defined as a new discipline by the first international conference on geotechnical earthquake engineering held in Tokyo in 1995. An essential part of geotechnical earthquake engineering is soil dynamics. Engineering cod