Differential Geometry And Its Applications (classroom Resource Materials) (mathematical Association Of America Textbooks)

Preparing link to download Please wait... Download

E-Book Overview

Differential geometry has a long, wonderful history. It has found relevance in areas ranging from machinery design to the classification of four-manifolds to the creation of theories of nature's fundamental forces to the study of DNA. This book studies the differential geometry of surfaces with the goal of helping students make the transition from the compartmentalized courses in a standard university curriculum to a type of mathematics that is a unified whole. It mixes together geometry, calculus, linear algebra, differential equations, complex variables, the calculus of variations, and notions from the sciences. Differential geometry is not just for mathematics majors. It is also for students in engineering and the sciences. The mix of ideas offer students the opportunity to visualize concepts through the use of computer algebra systems such as Maple. The book emphasizes that this visualization goes hand-in-hand with the understanding of the mathematics behind the computer construction. Students will not only see geodesics on surfaces, but they will also observe the effect that an abstract result such as the Clairaut relation can have on geodesics. Furthermore, the book shows how the equations of motion of particles constrained to surfaces are actually types of geodesics. The book is rich in results and exercises that form a continuous spectrum, from those that depend on calculation to proofs that are quite abstract.

E-Book Information

  • Year: 2,007

  • Edition: 2

  • Pages: 496

  • Pages In File: 496

  • Language: English

  • Topic: 121

  • Issue: 2011 12 30

  • Identifier: 0883857480,9780883857489

  • Ddc: 516.3/6

  • Lcc: QA641 .O67 2007

  • Org File Size: 60,808,917

  • Extension: pdf

  • Tags: Математика Топология Дифференциальная геометрия и топология Дифференциальная геометрия

  • Toc: 1......Page 10001......Page 20002......Page 30003......Page 40004......Page 50005......Page 60006......Page 70007......Page 80008......Page 90009......Page 100010......Page 110011......Page 120012......Page 130013......Page 140014......Page 150015......Page 160016......Page 170017......Page 180018......Page 190019......Page 200020......Page 210021......Page 220022......Page 230023......Page 240024......Page 250025......Page 260026......Page 270027......Page 280028......Page 290029......Page 300030......Page 310031......Page 320032......Page 330033......Page 340034......Page 350035......Page 360036......Page 370037......Page 380038......Page 390039......Page 400040......Page 410041......Page 420042......Page 430043......Page 440044......Page 450045......Page 460046......Page 470047......Page 480048......Page 490049......Page 500050..