Practical Applications Of Radioactivity And Nuclear Radiations

Preparing link to download Please wait... Download

E-Book Overview

This book shows how to use radioisotopes and the emitted ionizing radiations effectively and safely. It describes decay and stability criteria, necessary precautions to ensure radiation protection and the detection of alpha, beta and gamma rays including spectrometry. Chapters cover calorimetry, liquid scintillation counting, how to use secondary standard instruments, high resolution detectors and how to calculate counting results estimating uncertainties and allowing for the statistics of radionuclide decays. Other subjects examined include industrial and scientific applications of alpha, beta, and gamma rays, neutrons and high energy radiations.

E-Book Content

This page intentionally left blank PRACTICAL APPLICATIONS OF RADIOACTIVITY AND NUCLEAR RADIATIONS This book introduces selected examples from the numerous applications of radioisotopes and ionising radiations to engineering and environmental sciences and technologies. In addition, it serves teachers and students as an introductory course in nuclear sciences. The early chapters introduce the properties of radionuclides, radioactive sources, ionising radiations, detectors and instrumentation, and how they are used. Also described are the methods for obtaining accurate countrate measurements allowing for the statistics of radioactive decays. Later chapters introduce applications to mining, mineral processing, petroleum re®ning, contaminant transport, borehole logging, ¯uid ¯ow measurements and to the assessment of sites for radioactive waste disposal. The fact that different radiotracers can be used to separately label and study different components of complex systems is an outstanding example of their versatility. This book will be of particular interest to scientists, technologists, teachers and students, helping them to work with radioisotopes safely, ef®ciently and reliably. Since the 1960s, Drs Lowenthal and Airey served on the research staff of the Australian Nuclear Science and Technology Organisation, ANSTO (formerly the Australian Atomic Energy Commission, AAEC), where Dr Airey continues to hold a senior position. dr lowenthal was the leader of a small group which established the Australian Standards of Radioactivity. In the mid-1970s he became the Australian Representative on the International Committee for Radionuclide Metrology (an independent organisation of specialists) and was invited to represent Australia on the Consultative Committee for Standards for the Measurement of Ionising Radiations on the International Committee for Weights and Measures, Paris. He has published some 50 research papers with other members of the group and for six years was honorary Australasian Editor of the International Journal of Applied Radiation and Isotopes. He is currently Honorary Consultant for Nuclear Medicine at the Royal Prince Alfred Hospital and an Honorary Consultant in the School of Mechanical and Manufacturing Engineering at the University of New South Wales. It was largely for his contributions to radionuclide metrology that he was named (in 1994 in Paris), Chevalier de l'Ordre National du Merite and, in 1999, was made a Member of the General Division of the Order of Australia (AM). dr airey is a physical chemist who has been extensively involved in research into the applications of radioactivity and radiation to industry and the environment. From 1986 to 1990, he was posted to the International Atomic Energy Agency where he coordinated a range of programs involving these applications in Asia and the Paci®c. He is currently Australian National Counterpart for selected IAEA projects. Prior to his appointment to the IAEA and on his return, Dr Airey was responsible for coordinating an international OECD Nuclear Energy Agency project concerned with the evaluation of uranium deposits as natural analogues of radioactive waste repositories. From 19