Tunable Laser Applications

Preparing link to download Please wait... Download

E-Book Overview

Tunability has added an important dimension to a variety of laser devices and led to new systems and applications.  From laser spectroscopy to Bose-Einstein condensation, the one nexus is the tunable laser. Incorporating nine new chapters since the first edition, Tunable Laser Applications, Second Edition reflects the significant developments in tunable lasers that have taken place over the past decade. Internationally recognized experts describe the physics and architecture of widely applied tunable laser sources, emphasizing biomedical applications of fiber lasers and ultrashort pulsed lasers, as well as laser isotope separation and cancer photodynamic therapy. The Second Edition Covers— Advances in optical parametric oscillators Developments in tunable semiconductor lasers Solid-state dye lasers Laser isotope separation using diode lasers Medical applications of table-top coherent X-rays Outlining applications in biology and medicine, this second edition offers a much-needed account of the most promising tunable laser applications.

E-Book Content

Tunable Laser Applications Second Edition TAF-DUARTE-08-0201-0FM.indd i 7/9/08 5:22:55 PM OPTICAL SCIENCE AND ENGINEERING Founding Editor Brian J. Thompson University of Rochester Rochester, New York 1. Electron and Ion Microscopy and Microanalysis: Principles and Applications, Lawrence E. Murr 2. Acousto-Optic Signal Processing: Theory and Implementation, edited by Norman J. Berg and John N. Lee 3. Electro-Optic and Acousto-Optic Scanning and Deflection, Milton Gottlieb, Clive L. M. Ireland, and John Martin Ley 4. Single-Mode Fiber Optics: Principles and Applications, Luc B. Jeunhomme 5. Pulse Code Formats for Fiber Optical Data Communication: Basic Principles and Applications, David J. Morris 6. Optical Materials: An Introduction to Selection and Application, Solomon Musikant 7. Infrared Methods for Gaseous Measurements: Theory and Practice, edited by Joda Wormhoudt 8. Laser Beam Scanning: Opto-Mechanical Devices, Systems, and Data Storage Optics, edited by Gerald F. Marshall 9. Opto-Mechanical Systems Design, Paul R. Yoder, Jr. 10. Optical Fiber Splices and Connectors: Theory and Methods, Calvin M. Miller with Stephen C. Mettler and Ian A. White 11. Laser Spectroscopy and Its Applications, edited by Leon J. Radziemski, Richard W. Solarz, and Jeffrey A. Paisner 12. Infrared Optoelectronics: Devices and Applications, William Nunley and J. Scott Bechtel 13. Integrated Optical Circuits and Components: Design and Applications, edited by Lynn D. Hutcheson 14. Handbook of Molecular Lasers, edited by Peter K. Cheo 15. Handbook of Optical Fibers and Cables, Hiroshi Murata 16. Acousto-Optics, Adrian Korpel 17. Procedures in Applied Optics, John Strong 18. Handbook of Solid-State Lasers, edited by Peter K. Cheo 19. Optical Computing: Digital and Symbolic, edited by Raymond Arrathoon 20. Laser Applications in Physical Chemistry, edited by D. K. Evans 21. Laser-Induced Plasmas and Applications, edited by Leon J. Radziemski and David A. Cremers 22. Infrared Technology Fundamentals, Irving J. Spiro and Monroe Schlessinger TAF-DUARTE-08-0201-0FM.indd ii 7/9/08 5:22:57 PM 23. Single-Mode Fiber Optics: Principles and Applications, Second Edition, Revised and Expanded, Luc B. Jeunhomme 24. Image Analysis Applications, edited by Rangachar Kasturi and Mohan M. Trivedi 25. Photoconductivity: Art, Science, and Technology, N. V. Joshi 26. Principles of Optical Circuit Engineering, Mark A. Mentzer 27. Lens Design, Milton Laikin 28. Optical Components, Systems, and Measurement Techniques, Rajpal S. Sirohi and M. P. Kothiyal 29. Electron and Ion Microscopy and Microanalysis: Principles and Applications, Second Edition, Revised and Expanded, Lawrence E. Murr 30. Handbook of Infrared Optical Materials, edited by Paul Klocek 31. Optical Scan