C4 Photosynthesis And Related Co2 Concentrating Mechanisms

Preparing link to download Please wait... Download

E-Book Overview

The C4 pathway of photosynthesis was discovered and characterized, more than four decades ago. Interest in C4 pathway has been sustained and has recently been boosted with the discovery of single-cell C4 photosynthesis and the successful introduction of key C4-cycle enzymes in important crops, such as rice. Further, cold-tolerant C4 plants are at the verge of intense exploitation as energy crops. Rapid and multidisciplinary progress in our understanding of C4 plants warrants a comprehensive documentation of the available literature. The book, which is a state-of-the-art overview of several basic and applied aspects of C4 plants, will not only provide a ready source of information but also triggers further research on C4 photosynthesis. Written by internationally acclaimed experts, it provides an authoritative source of progress made in our knowledge of C4 plants, with emphasis on physiology, biochemistry, molecular biology, biogeography, evolution, besides bioengineering C4 rice and biofuels. The book is an advanced level textbook for postgraduate students and a reference book for researchers in the areas of plant biology, cell biology, biotechnology, agronomy, horticulture, ecology and evolution.


E-Book Content

C4 Photosynthesis and Related CO2 Concentrating Mechanisms Advances in Photosynthesis and Respiration VOLUME 32 Series Editors: GOVINDJEE* (University of Illinois at Urbana-Champaign, IL, U.S.A) Thomas D. SHARKEY (Michigan State University, East Lansing, MI, U.S.A) *Founding Series Editor Consulting Editors: Elizabeth AINSWORTH, United States Department of Agriculture, Urbana, IL, U.S.A. Basanti BISWAL, Sambalpur University, Jyoti Vihar, Orissa, India Robert E. BLANKENSHIP, Washington University, St Louis, MO, U.S.A. Ralph BOCK, Max Planck Institute of Molecular Plant Physiology, Postdam-Golm, Germany Julian J. EATON-RYE, University of Otago, Dunedin, New Zealand Wayne FRASCH, Arizona State University, Tempe, AZ, U.S.A. Johannes MESSINGER, Umeå University, Umeå, Sweden Masahiro SUGIURA, Nagoya City University, Nagoya, Japan Davide ZANNONI, University of Bologna, Bologna, Italy Lixin ZHANG, Institute of Botany, Beijing, China The scope of our series reflects the concept that photosynthesis and respiration are intertwined with respect to both the protein complexes involved and to the entire bioenergetic machinery of all life. Advances in Photosynthesis and Respiration is a book series that provides a comprehensive and stateof-the-art account of research in photosynthesis and respiration. Photosynthesis is the process by which higher plants, algae, and certain species of bacteria transform and store solar energy in the form of energy-rich organic molecules. These compounds are in turn used as the energy source for all growth and reproduction in these and almost all other organisms. As such, virtually all life on the planet ultimately depends on photosynthetic energy conversion. Respiration, which occurs in mitochondrial and bacterial membranes, utilizes energy present in organic molecules to fuel a wide range of metabolic reactions critical for cell growth and development. In addition, many photosynthetic organisms engage in energetically wasteful photorespiration that begins in the chloroplast with an oxygenation reaction catalyzed by the same enzyme responsible for capturing carbon dioxide in photosynthesis. This series of books spans topics from physics to agronomy and medicine, from femtosecond processes to season-long production, from the photophysics of reaction centers, through the electrochemistry of intermediate electron transfer, to the physiology of whole organisms, and from X-ray crystallography of proteins to the morphology or organelles and intact organisms. The goal of the series is to offer beginning researchers, advanced undergraduate students, graduate students, and even research specialists,