E-Book Content
The Philosophical Importance of Mathematical Logic Bertrand Russell
IN SPEAKING OF "Mathematical logic", I use this word in a very broad sense. By it I understand the works of Cantor on transfinite numbers as well as the logical work of Frege and Peano. Weierstrass and his successors have "arithmetised" mathematics; that is to say, they have reduced the whole of analysis to the study of integer numbers. The accomplishment of this reduction indicated the completion of a very important stage, at the end of which the spirit of dissection might well be allowed a short rest. However, the theory of integer numbers cannot be constituted in an autonomous manner, especially when we take into account the likeness in properties of the finite and infinite numbers. It was, then, necessary to go farther and reduce arithmetic, and above all the definition of numbers, to logic. By the name "mathematical logic", then, I will denote any logical theory whose object is the analysis and deduction of arithmetic and geometry by means of concepts which belong evidently to logic. It is this modern tendency that I intend to discuss here. In an examination of the work done by mathematical logic, we may consider either the mathematical results, the method of mathematical reasoning as revealed by modern work, or the intrinsic nature of mathematical propositions according to the analysis which mathematical logic makes of them. It is impossible to distinguish exactly these three aspects of the subject, but there is enough of a distinction to serve the purpose of a framework for discussion. It might be thought that the inverse order would be the best; that we ought first to consider what a mathematical proposition is, then the method by which such propositions are demonstrated, and finally the results to which this method leads us. But the problem which we have to resolve, like every truly philosophical problem, is a problem of analysis; and in problems of analysis the best method is that which sets out from results and arrives at the premises. In mathematical logic it is the conclusions which have the greatest degree of
certainty: the nearer we get to the ultimate premises the more uncertainty and difficulty do we find. From the philosophical point of view, the most brilliant results of the new method are the exact theories which we have been able to form about infinity and continuity. We know that when we have to do with infinite collections, for example the collection of finite integer numbers, it is possible to establish a one-to-one correspondence between the whole collection and a part of itself. For example, there is such a correspondence between the finite integers and the even numbers, since the relation of a finite number to its double is one-to-one. Thus it is evident that the number of an infinite collection is equal to the number of a part of this collection. It was formerly believed that this was a contradiction; even Leibnitz, although he was a partisan of the actual infinite, denied infinite number because of this supposed contradiction. But to demonstrate that there is a contradiction we must suppose that all numbers obey mathematical induction. To explain mathematical induction, let us call by the name "hereditary property" of a number a property which belongs to n + 1 whenever it belongs to n. Such is, for example, the property of being greater than 100. If a number is greater than 100, the next number after it is greater than 100. Let us call by the name "inductive property" of a number a hereditary property which is possessed by the number zero. Such a property must belong to 1, since it is hereditary and belongs to 0; in the same way, it must belong to 2, since it belongs to 1; and so on. Consequently the numbers of daily life possess every inductive property. Now, amongst the inductive properties of numbers is found the following. If any collect