E-Book Overview
A reader-friendly introduction to geostatistics for students and researchers struggling with statistics. Using simple, clear explanations for introductory and advanced material, it demystifies complex concepts and makes formulas and statistical tests easy to apply. Beginning with a critical evaluation of experimental and sampling design, the book moves on to explain essential concepts of probability, statistical significance and type 1 and type 2 error. An accessible graphical explanation of analysis of variance (ANOVA) leads onto advanced ANOVA designs, correlation and regression, and non-parametric tests including chi-square. Finally, it introduces the essentials of multivariate techniques, multi-dimensional scaling and cluster analysis, analysis of sequences and concepts of spatial analysis. Illustrated with wide-ranging examples from topics across the Earth and environmental sciences, Geostatistics Explained can be used for undergraduate courses or for self-study and reference. Worked examples at the end of each chapter reinforce a clear understanding of the statistical tests and their applications.
E-Book Content
This page intentionally left blank
Geostatistics Explained An Introductory Guide for Earth Scientists
This reader-friendly introduction to geostatistics provides a lifeline for students and researchers across the Earth and environmental sciences who until now have struggled with statistics. Using simple and clear explanations for both introductory and advanced material, it demystifies complex concepts and makes formulas and statistical tests easy to understand and apply. The book begins with a discussion and critical evaluation of experimental and sampling design before moving on to explain essential concepts of probability, statistical significance and Type 1 and Type 2 error. Tests for one and two samples are presented, followed by an accessible graphical explanation of analysis of variance (ANOVA). More advanced ANOVA designs, correlation and regression, and non-parametric tests including chi-square, are then considered. Finally, it introduces the essentials of multivariate techniques such as principal components analysis, multidimensional scaling and cluster analysis, analysis of sequences (especially autocorrelation and simple regression models) and concepts of spatial analysis, including the semivariogram and its application in Kriging. Illustrated with wide-ranging and interesting examples from topics across the Earth and environmental sciences, Geostatistics Explained provides a solid grounding in the basic methods, as well as serving as a bridge to more specialized and advanced analytical techniques. It can be used for an undergraduate course or for self-study and reference. Worked examples at the end of each chapter help reinforce a clear understanding of the statistical tests and their applications. Steve McKillup is an Associate Professor in the Department of Biosystems and Resources at Central Queensland University. He has received several tertiary teaching awards, including the Vice-Chancellor’s Award for Quality Teaching and a 2008 Australian Learning and Teaching Council citation “For developing a highly successful method of teaching complex physiological and statistical concepts, and embodying that method in an innovative international textbook.” He is the author of Statistics Explained: An Introductory Guide for Life Scientists (Cambridge, 2006).
His research interests include biological control of introduced species, the ecology of soft-sediment shores and mangrove swamps. Melinda Darby Dyar is an Associate Professor of Geology and Astronomy at Mount Holyoke College, Massachusetts. Her research interests range from innovative pedagogies and curricular materials to the characterization of planetary materials. She has studied samples from mid-ocean ridges and every continent