E-Book Content
• '
'
'
' '.
.
'
I
•
" ' ' \'
\
l
I
'
'
'
.,
1
'
'
'
..
i
,
I,
14
'
r
'
1
,1
' I
(
,t l
l
•
,'I.;;
, ,
, 1
'
I
ri
!' '')
•
,
'
''
' '
,,, I
, ,:'-·!
'
'
I
'
'
f,'
'
I
11 ,, ' 'J ty
''
'
I'
I
'
, l
I
'•
1,j
1,~fl
~
•
,.
,
J'
'
•.. 1
,
'
I
I
•
1
\
,~r,.,.
, •
.Ji:'fi
I
'
i
~
'1·
'
J
•
~
· ·SPE':.t lllc:POWER ·01~ MHD-rGENEM.To·
\'I
1
. \ I
I
'·
'
I
'
' '
'
'
''
'
'
.'
'
(
I'
Wtrr.II'MOVING MAGNETIC FIELD
I•
"•· ft\ 1
°J'
(L:o¢ul tli'eoky ofMagnetic. Turbine) . f :~ 11' t
'
•·
i
'
'
1:.
This docunzent ·:&escribe.L~ a proce·s&:,..patentecf byr A•nclr~w 1-Cazantsev a,., '.f4d is protected under all laws applicable. }>]~ase cpmmunicate·Via SC1N, Inc. representing the' inte~est of the pqtent holder. '
~
'
'
,• '
In this article I
i' ,
consider resolving €} MH~:· ·~q~'l:l;tion system for a two~djrnension,tflow of an ionized
... working medium (for e~~~~~; '.!;~·g~.·:, temp*ra~tire gas or plasma) intera'cting with ·moving magnetic ' fiela·: · L·et's .ust~· :a . :~andatd : eqillltl6n ·system lnc;luding .the morr1~n~~m .. equatio~ the continuity
\
equation,.the Ofiln's laW: ·' ·
I
I
,
1
p(liV/qr) +·grad P = f
==
]x B
(1)
pv:r.F =canst
I
] = o{~x B+ E)-(_qJf)!Jx BJ
\
. . r.
\
' '
'
(2)
"
(3)
i·
\.
·'
}
where: p v t p
I I
I
!I I
l l
I
\" t
•
v.~
F
a E t
'
Ez'
- current density, - magnetic ind·u ction,
,
. - flow speed projection on "x" coordmate, _duct cross-section area, - flow conductivitt,, - electric iritynsity, · ·
Wx, Vx, Ux, Jx z
Wz, Vz, Uz, Jz
= fl · _I-Iall's parameter .
())r
•
By
- flow velocity, - time, - pressure, - specific electromagnetic force,
J B
r" i
y
- n1ass density,
: ;' ~ .. · , ,
,,
t
fields and velocities, which are shown on the Let's use as positive direction5 ·thQs:e .o·f curren s, , , .' t k and assume that flow parameters figtlre. L~t's resolve a stationary (8/ot :;=:: ~) two-dimens10; t:~ential coordinate) because a du ti don't change (oli)z ,- 0) a1011g th~ "'z" ?oord~at~s(t~ar:;;~~al ring duct with.a constant cross- ecti n infinite along Pz" coordinate (for example, if thi _ ) ly the following condition result fr m . . ib·Ie flow (p - const on ' area F). lf to consider an mcompress1 .
tI l
'
" '
.
tbe«iuation (2):