Toc: Content:
Preface xi
Nomenclature xiii
1 Essentials of Fluid Mechanics 1
1.1 Kinematics of Fluid Flow 1
1.2 Conservation Principles 4
1.3 Some Important Applications 8
1.4 Dimensionless Numbers 12
1.5 Laminar and Turbulent Flows 12
1.6 Flow Separation 13
1.7 Cavitation 13
1.8 Friction Losses in Pipes and Pipe Fittings 14
References 21
2 Introduction and Basic Considerations 29
2.1 Introduction 29
2.2 Basic Definitions and Terminology 37
2.3 Determination of Flow Rate in a Pumping System 45
2.4 Operation of Pumps in Parallel and in Series 51
2.5 Similitude Applied to Centrifugal and Axial Flow Pumps 55
2.6 Flow Rate Control in Dynamic Pump Systems 62
2.7 Pump Specific Speed 65
References 72
3 Fundamentals of Energy Transfer in Centrifugal Pumps 81
3.1 Main Components of the Centrifugal Pump 81
3.2 Energy Transfer from the Pump Rotor to the Fluid 88
3.3 Theoretical Characteristic Curves 93
3.4 Deviation from Theoretical Characteristics 99
3.5 Leakage Losses 105
3.6 Mechanical Losses 106
3.7 Relationship between the Overall Efficiency and Other Efficiencies 111
3.8 Flow Rate Control in Pumping Systems 118
References 126
4 Axial and Radial Thrusts in Centrifugal Pumps 133
4.1 Introduction 133
4.2 Axial Thrust 133
4.3 Methods of Balancing the Axial Thrust 135
4.4 Radial Thrust 144
References 153
5 Common Problems in Centrifugal Pumps 159
5.1 Introduction 159
5.2 Cavitation 160
5.3 Mechanism of Cavitation Erosion 179
5.4 Solid Particle Erosion 180
5.5 Pump Surge 180
5.6 Operation at Other Than the Normal Capacity 183
5.7 Temperature Rise of Pumped Fluid 186
5.8 Change of Pump Performance with Fluid Viscosity 189
5.9 Rotating Stall in Centrifugal Pumps 190
5.10 Pump Vibration 191
5.11 Vibration Measurements 193
5.12 Vibration Signal Analysis 194
References 198
6 Axial Flow Pumps 205
6.1 Introduction 205
6.2 Definitions and General Considerations 205
6.3 Pump Theoretical Head and the Mean Effective Radius 210
6.4