E-Book Overview
Eight chapters consider the latest research and thought in the study of how insects use chemical signals to communicate with each other or to interact with other species. Written by internationally recognized experts, they focus on topics such as plant defenses against insects, floral odors that attract pollinators, host finding by parasitic insects, and pheromone-mediated interactions in cockroaches, moths, spiders, and mites. The book is essential reading for researchers and graduate students of chemically mediated communication in insects.
E-Book Content
This page intentionally left blank
ADVAN C E S IN IN SEC T C H EMICA L ECOLOGY Chemical signals mediate all aspects of insects’ lives and their ecological interactions. The discipline of chemical ecology seeks to unravel these interactions by identifying and defining the chemicals involved, and by documenting how perception of these chemical mediators modifies behavior and, ultimately, reproductive success. Chapters in this volume consider how plants use chemicals to defend themselves from insect herbivores; the complexity of floral odors that mediate insect pollination; tritrophic interactions of plants, herbivores, and parasitoids, and the chemical cues that parasitoids use to find their herbivore hosts; the semiochemically mediated behaviors of mites; pheromone communication in spiders and cockroaches; the ecological dependence of tiger moths on the chemistry of their host plants; and the selective forces that shape the pheromone communication channel of moths. Each review is written by an internationally recognized expert and presents descriptions of the chemicals involved, the effects of semiochemically mediated interactions on reproductive success, and the evolutionary pathways that have shaped the chemical ecology of arthropods. Professors Ring Card e´ and Jocelyn Millar are both based in the University of California at Riverside. Between them, they have written over 300 articles on chemical ecology and have co-edited six books.
A DVA NC ES I N I N SECT CHEMICAL EC O LO GY Edited by R I N G T. C A R D E´ A N D J O C E LY N G . M I L L A R University of California at Riverside, USA
cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge cb2 2ru, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521792752 © Cambridge University Press 2004 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2004 isbn-13 isbn-10
978-0-511-21091-4 eBook (EBL) 0-511-21268-2 eBook (EBL)
isbn-13 isbn-10
978-0-521-79275-2 hardback 0-521-79275-4 hardback
Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.
Contents
1
2 3 4 5
6 7
8
List of contributors page vi Preface ix Phytochemical diversity of insect defenses in tropical and temperate plant families 1 John T. Arnason, Gabriel Guillet and Tony Durst Recruitment of predators and parasitoids by herbivore-injured plants 21 Ted C. J. Turlings and Felix W¨ackers Chemical ecology of astigmatid mites 76 Yasumasa Kuwahara Semiochemistry of spiders 110 Stefan Schulz Why do flowers smell? The chemical ecology of fragrance-driven pollination 151 Robert A. Raguso Sex pheromones of cockroaches 179 C´esar Gemeno and C