Measuring And Sustaining The New Economy, Software, Growth, And The Future Of The U.s Economy: Report Of A Symposium

Preparing link to download Please wait... Download

E-Book Overview

Starting in the mid 1990s, the United States economy experienced an unprecedented upsurge in economic productivity. Rapid technological change in communications, computing, and information management continue to promise further gains in productivity, a phenomenon often referred to as the New Economy. To better understand this phenomenon, the National Academies Board on Science, Technology, and Economic Policy (STEP) has convened a series of workshops and commissioned papers on Measuring and Sustaining the New Economy. This major workshop, entitled Software, Growth, and the Future of the U.S. Economy, convened academic experts and industry representatives from leading companies such as Google and General Motors to participate in a high-level discussion of the role of software and its importance to U.S. productivity growth; how software is made and why it is unique; the measurement of software in national and business accounts; the implications of the movement of the U.S. software industry offshore; and related policy issues.

E-Book Content

MEASURING AND SUSTAINING THE NEW ECONOMY SOFTWARE, GROWTH, AND THE FUTURE OF THE U.S. ECONOMY Report of a Symposium DALE W. JORGENSON AND CHARLES W. WESSNER, EDITORS Committee on Software, Growth, and the Future of the U.S. Economy Committee on Measuring and Sustaining the New Economy Board on Science, Technology, and Economic Policy Policy and Global Affairs THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This study was supported by: Contract/Grant No. CMRC-50SBNB9C1080 between the National Academy of Sciences and the U.S. Department of Commerce; Contract/Grant No. NASW-99037, Task Order 103, between the National Academy of Sciences and the National Aeronautics and Space Administration; Contract/Grant No. CMRCSB134105C0038 between the National Academy of Sciences and the U.S. Department of Commerce; OFED-13416 between the National Academy of Sciences and Sandia National Laboratories; Contract/Grant No. N00014-00-G-0230, DO #23, between the National Academy of Sciences and the Department of the Navy; Contract/Grant No. NSF-EIA0119063 between the National Academy of Sciences and the National Science Foundation; and Contract/Grant No. DOE-DE-FG02-01ER30315 between the National Academy of Sciences and the U.S. Department of Energy. Additional support was provided by Intel Corporation. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the organizations or agencies that provided support for the project. International Standard Book Number 0-309-09950-1 Limited copies are available from Board on Science, Technology, and Economic Policy, National Research Council, 500 Fifth Street, N.W., W547, Washington, DC 20001; (202) 334-2200. Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 3343313 (in the Washington metropolitan area); Internet, http://www.nap.edu Copyright 2006 by the National Academy of Sciences. All rights reserved. Printed in the United States of America The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the fur