E-Book Overview
Mathematical models of bond markets are of interest to researchers working in applied mathematics, especially in mathematical finance. This book concerns bond market models in which random elements are represented by Lévy processes. These are more flexible than classical models and are well suited to describing prices quoted in a discontinuous fashion. The book's key aims are to characterize bond markets that are free of arbitrage and to analyze their completeness. Nonlinear stochastic partial differential equations (SPDEs) are an important tool in the analysis. The authors begin with a relatively elementary analysis in discrete time, suitable for readers who are not familiar with finance or continuous time stochastic analysis. The book should be of interest to mathematicians, in particular to probabilists, who wish to learn the theory of the bond market and to be exposed to attractive open mathematical problems.
E-Book Content
M AT H E M AT I C S O F T H E B O N D M A R K E T Mathematical models of bond markets are of interest to researchers working in applied mathematics, especially in mathematical finance. This book concerns bond market models in which random elements are represented by L´evy processes. These are more flexible than classical models and are well suited to describing prices quoted in a discontinuous fashion. The book’s key aims are to characterize bond markets that are free of arbitrage and to analyze their completeness. Nonlinear stochastic partial differential equations (SPDEs) are an important tool in the analysis. The authors begin with a relatively elementary analysis in discrete time, suitable for readers who are not familiar with finance or continuous time stochastic analysis. The book should be of interest to mathematicians, in particular to probabilists, who wish to learn the theory of the bond market and to be exposed to attractive open mathematical problems. Encyclopedia of Mathematics and Its Applications This series is devoted to significant topics or themes that have wide application in mathematics or mathematical science and for which a detailed development of the abstract theory is less important than a thorough and concrete exploration of the implications and applications. Books in the Encyclopedia of Mathematics and Its Applications cover their subjects comprehensively. Less important results may be summarized as exercises at the ends of chapters. For technicalities, readers can be referred to the bibliography, which is expected to be comprehensive. As a result, volumes are encyclopedic references or manageable guides to major subjects. Encyclopedia of Mathematics and Its Applications All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit www.cambridge.org/mathematics. 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 F. W. King Hilbert Transforms I F. W. King Hilbert Transforms II O. Calin and D.-C. Chang Sub-Riemannian Geometry M. Grabisch et al. Aggregation Functions L. W. Beineke and R. J. Wilson (eds.) with J. L. Gross and T. W. Tucker Topics in Topological Graph Theory J. Berstel, D. Perrin and C. Reutenauer Codes and Automata T. G. Faticoni Modules over Endomorphism Rings H. Morimoto Stochastic Control and Mathematical Modeling G. Schmidt Relational Mathematics P. Kornerup and D. W. Matula Finite Precision Number Systems and Arithmetic Y. Crama and P. L. Hammer (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering V. Berth´e and M. Rigo (eds.) Combinatorics, Automata and Number Theory A. Krist´aly, V. D. R˘adulescu and C. Varga Variational Principles in Mathematical Physics, Geometry, and Economics J. Be