The Phases Of Quantum Chromodynamics

Preparing link to download Please wait... Download

E-Book Overview

This book discusses the physical phases of Quantum Chromodynamics (QCD) in ordinary environments, as well as in extreme environments with high temperatures and high baryon numbers. Under such extreme conditions, new phases are thought to exist: the quark-gluon plasma and color superconductivity. After introducing lattice gauge theory, John Kogut and Mikhail Stephanov emphasize the application of QCD to the study of matter in extreme environments through a host of methods. These include lattice gauge theory, lower dimensional model field theories and effective Lagrangians.

E-Book Content

This page intentionally left blank The Phases of Quantum Chromodynamics This book discusses the physical phases of quantum chromodynamics (QCD) in ordinary as well as in extreme environments of high temperatures and high baryon number. A major theme of this book is the idea that, to understand the dynamics of QCD in ordinary circumstances, one needs to master them in extreme environments. QCD is thought to be characterized in ordinary circumstances by quark confinement through the formation of flux tubes and chiral-symmetry breaking. These properties are believed to be lost in environments of extreme conditions and new phases, the quark–gluon plasma and color superconductivity, are thought to exist. The book is aimed at graduate students and researchers entering the fields of lattice-gauge theory, heavy-ion collisions, nuclear theory, and high-energy phenomenology, as well as astrophysicists interested in the phases of nuclear matter and their impact on our current ideas of the interiors of dense stars. It is suitable for use as a textbook on lattice-gauge theory, effective Lagrangians, and field-theoretical modeling for nonperturbative phenomena in QCD. J O H N K O G U T obtained his Ph.D. from Stanford University in 1971. He is a Fellow in the American Physical Society and has held Guggenheim (1987–8) and Sloan Foundation (1976–8) Fellowships. He is co-author of over 200 original papers in elementary-particle, high-energy, and condensed-matter physics, and is the author of one previous book. He is currently Professor of Physics at the University of Illinois, Urbana-Champaign. M I K H A I L S T E P H A N O V obtained his Ph.D. from the University of Oxford in 1994. He was a Postdoctoral Research Associate at the University of Illinois, Urbana-Champaign from 1994 to 1997 and then spent two years at the State University of New York at Stony Brook. He is at present Associate Professor at the University of Illinois at Chicago and RHIC Fellow at the RIKEN-BNL Center. He has published over 50 original papers on particle and nuclear physics, lattice quantumfield theory, matter under extreme conditions, and heavy-ion collisions. His research is supported by a DOE Outstanding Junior Investigator Award, as well as by an Alfred P. Sloan Foundation Fellowship. CAMBRIDGE MONOGRAPHS ON PARTICLE PHYSICS NUCLEAR PHYSICS AND COSMOLOGY 21 General Editors: T. Ericson, P. V. Landshoff 1. K. Winter (ed.): Neutrino Physics 2. J. F. Donoghue, E. Golowich and B. R. Holstein: Dynamics of the Standard Model 3. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume 1: Electroweak Interactions, the ‘New Particles’ and the Parton Model 4. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume 2: CP-Violation, QCD and Hard Processes 5. C. Grupen: Particle Detectors 6. H. Grosse and A. Martin: Particle Physics and the Schr¨odinger Equation 7. B. Andersson: The Lund Model 8. R. K. Ellis, W. J. Stirling and B. R. Webber: QCD and Collider Physics 9. I. I. Bigi and A. I. Sanda: CP Violation 10. A. V. Manohar andd M. B. Wise: Heavy Quark Physics 11. R. K. Bock, H. Grote, R. Fr¨uhwirth and M. Regler: Data Analysis Techniques for High-Energy Physics, Second edition 12. D. Green: T