E-Book Overview
The central aim of many studies in population research and demography is to explain cause-effect relationships among variables or events. For decades, population scientists have concentrated their efforts on estimating the ‘causes of effects’ by applying standard cross-sectional and dynamic regression techniques, with regression coefficients routinely being understood as estimates of causal effects. The standard approach to infer the ‘effects of causes’ in natural sciences and in psychology is to conduct randomized experiments. In population studies, experimental designs are generally infeasible.
In population studies, most research is based on non-experimental designs (observational or survey designs) and rarely on quasi experiments or natural experiments. Using non-experimental designs to infer causal relationships—i.e. relationships that can ultimately inform policies or interventions—is a complex undertaking. Specifically, treatment effects can be inferred from non-experimental data with a counterfactual approach. In this counterfactual perspective, causal effects are defined as the difference between the potential outcome irrespective of whether or not an individual had received a certain treatment (or experienced a certain cause). The counterfactual approach to estimate effects of causes from quasi-experimental data or from observational studies was first proposed by Rubin in 1974 and further developed by James Heckman and others.
This book presents both theoretical contributions and empirical applications of the counterfactual approach to causal inference.
E-Book Content
Causal Analysis in Population Studies THE SPRINGER SERIES ON DEMOGRAPHIC METHODS AND POPULATION ANALYSIS Series Editor KENNETH C. LAND Duke University In recent decades, there has been a rapid development of demographic models and methods and an explosive growth in the range of applications of population analysis. This series seeks to provide a publication outlet both for high-quality textual and expository books on modern techniques of demographic analysis and for works that present exemplary applications of such techniques to various aspects of population analysis. Topics appropriate for the series include: • • • • • • • • • • • • • General demographic methods Techniques of standardization Life table models and methods Multistate and multiregional life tables, analyses and projections Demographic aspects of biostatistics and epidemiology Stable population theory and its extensions Methods of indirect estimation Stochastic population models Event history analysis, duration analysis, and hazard regression models Demographic projection methods and population forecasts Techniques of applied demographic analysis, regional and local population estimates and projections Methods of estimation and projection for business and health care applications Methods and estimates for unique populations such as schools and students Volumes in the series are of interest to researchers, professionals, and students in demography, sociology, economics, statistics, geography and regional science, public health and health care management, epidemiology, biostatistics, actuarial science, business, and related fields. For other titles published in this series, go to www.springer.com/series/6449 Causal Analysis in Population Studies Concepts, Methods, Applications Edited by Henriette Engelhardt University of Bamberg, Germany Hans-Peter Kohler University of Pennsylvania, Philadelphia, PA, USA and Alexia Prskawetz Vienna Institute of Demography, Austrian Academy of Sciences and Vienna University of Technology, Austria 123 Editors Prof. Henriette Engelhardt University of Bamberg Faculty of Social and Economic Sciences Lichtenhaidestr. 11 9