E-Book Overview
A fixed-parameter is an algorithm that provides an optimal solution to a combinatorial problem. This research-level text is an application-oriented introduction to the growing and highly topical area of the development and analysis of efficient fixed-parameter algorithms for hard problems. The book is divided into three parts: a broad introduction that provides the general philosophy and motivation; followed by coverage of algorithmic methods developed over the years in fixed-parameter algorithmics forming the core of the book; and a discussion of the essential from parameterized hardness theory with a focus on W [1]-hardness, which parallels NP-hardness, then stating some relations to polynomial-time approximation algorithms, and finishing up with a list of selected case studies to show the wide range of applicability of the presented methodology. Aimed at graduate and research mathematicians, programmers, algorithm designers and computer scientists, the book introduces the basic techniques and results and provides a fresh view on this highly innovative field of algorithmic research.
E-Book Content
Oxford Lecture Series in Mathematics and its Applications 31 Series Editors John Ball Dominic Welsh OXFORD LECTURE SERIES IN MATHEMATICS AND ITS APPLICATIONS 1. J. C. Baez (ed.): Knots and quantum gravity 2. I. Fonseca and W. Gangbo: Degree theory in analysis and applications 3. P. L. Lions: Mathematical topics in fluid mechanics, Vol. 1: Incompressible models 4. J. E. Beasley (ed.): Advances in linear and integer programming 5. L. W. Beineke and R. J. Wilson (eds): Graph connections: Relationships between graph theory and other areas of mathematics 6. I. Anderson: Combinatorial designs and tournaments 7. G. David and S. W. Semmes: Fractured fractals and broken dreams 8. Oliver Pretzel: Codes and algebraic curves 9. M. Karpinski and W. Rytter: Fast parallel algorithms fo