E-Book Overview
The scope of the detection techniques in particle detectors is very wide, depending on the aim of the measurement. Detectors cover the measurement of energies from the very low to the highest of energies observed in cosmic rays. Describing the instrumentation for experiments in high energy physics and astroparticle physics, this edition describes track detectors, calorimeters, particle identification, neutrino detectors, momentum measurement, electronics, and data analysis. It also discusses applications of these detectors in other fields such as nuclear medicine, radiation protection and environmental science. Problem sets have been added to each chapter and additional instructive material has been provided, making this an excellent reference for graduate students and researchers in particle physics.
E-Book Content
This page intentionally left blank
PA RT I C L E D E T E C T O R S Second Edition The scope of the detection techniques in particle detectors is very wide, depending on the aim of the measurement. Each physics phenomenon can be used as the basis for a particle detector. Elementary particles have to be identified with various techniques, and relevant quantities like time, energy, and spatial coordinates have to be measured. Particle physics requires extremely high accuracies for these quantities using multipurpose installations as well as dedicated experimental set-ups. Depending on the aim of the measurement, different effects are used. Detectors cover the measurement of energies from very low energies (micro-electron-volts) to the highest of energies observed in cosmic rays. Describing the current state-of-the-art instrumentation for experiments in high energy physics and astroparticle physics, this new edition covers track detectors, calorimeters, particle identification, neutrino detectors, momentum measurement, electronics and data analysis. It also discusses up-to-date applications of these detectors in other fields such as nuclear medicine, radiation protection and environmental science. Problem sets have been added to each chapter and additional instructive material has been provided, making this an excellent reference for graduate students and researchers in particle physics. Claus Grupen is Professor Dr in the Department of Physics at Siegen University. He was awarded the Special High Energy and Particle Physics Prize of the European Physical Society for establishing the existence of the gluon in independent and simultaneous ways, as member of the PLUTO experiment at DESY in 1995. Boris Shwartz is a Leading Researcher at the Budker Institute of Nuclear Physics. He has worked on the development and construction of the detectors used in several projects, including the KEDR and CMD-2 detectors, and WASA and Belle experiments.
CAMBRIDGE MONOGRAPHS ON PA RT I C L E P H Y S I C S , NUCLEAR PHYSICS AND COSMOLOGY 26
General Editors: T. Ericson, P.V. Landshoff
1. K. Winter (ed.): Neutrino Physics 2. J. F. Donoghue, E. Golowich and B. R. Holstein: Dynamics of the Standard Model 3. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume 1: Electroweak Interactions, the ‘New Particles’ and the Parton Model 4. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume 2: CP-Violation, QCD and Hard Processes 5. C. Grupen: Particle Detectors 6. H. Grosse and A. Martin: Particle Physics and the Schr¨ odinger Equation 7. B. Anderson: The Lund Model 8. R. K. Ellis, W. J. Stirling and B. R. Webber: QCD and Collider Physics 9. I. I. Bigi and A. I. Sanda: CP Violation 10. A. V. Manohar and M. B. Wise: Heavy Quark Physics 11. R. K. Bock, H. Grote, R. Fr¨ uhwirth and M. Regler: Data Analysis Techniques for HighEnergy Physics, Second Edition 12. D. Green: The Physics of Particle Detectors 13. V. N. Gribov and J. Nyiri: Quantum