E-Book Overview
This book introduces the theory of modular forms with an eye toward the Modularity Theorem:
All rational elliptic curves arise from modular forms.
The topics covered include
* elliptic curves as complex tori and as algebraic curves,
* modular curves as Riemann surfaces and as algebraic curves,
* Hecke operators and Atkin--Lehner theory,
* Hecke eigenforms and their arithmetic properties,
* the Jacobians of modular curves and the Abelian varieties
associated to Hecke eigenforms,
* elliptic and modular curves modulo~$p$ and the Eichler--Shimura
Relation,
* the Galois representations associated to elliptic curves
and to Hecke eigenforms.
As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory.
A First Course in Modular Forms is written for beginning graduate students and advanced undergraduates. It does not require background in algebraic number theory or algebraic geometry, and it contains exercises throughout.
Fred Diamond received his Ph.D from Princeton University in 1988 under the direction of Andrew Wiles and now teaches at Brandeis University. Jerry Shurman received his Ph.D from Princeton University in 1988 under the direction of Goro Shimura and now teaches at Reed College.
E-Book Content
Graduate Texts in Mathematics
228
Editorial Board S. Axler F.W. Gehring K.A. Ribet
Graduate Texts in Mathematics 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
TAKEUTI/ZARING. Introduction to Axiomatic Set Theory. 2nd ed. OXTOBY. Measure and Category. 2nd ed. SCHAEFER. Topological Vector Spaces. 2nd ed. HILTON/STAMMBACH. A Course in Homological Algebra. 2nd ed. MAC LANE. Categories for