E-Book Overview
Treats roughness primarily as an engineering phenomenon, reflecting author's interests and background in tribology and production engineering. Assumes a general familiarity with scientific and engineering terms and concepts.
E-Book Content
Rough Surfaces Second Edition
Rough Surfaces Second Edition
Tom R.Thomas Production Engineering Department, Chalmers University of Technology, Sweden
Imperial College Press
Published by
Imperial College Press 203 Electrical Engineering Building Imperial College London SW7 2BT Distributed by
World Scientific Publishing Co. Re. Ltd. P 0 Box 128, Farrer Road, Singapore 912805 USA office: Suite lB, 1060 Main Street, River Edge, NJ 07661
U K ofice: 57 Shelton Street, Covent Garden, London WC2H 9HE
British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library
First edition published in 1982 by Longman Group UK Limited
ROUGH SURFACES, Second Edition Copyright 0 1999 by Imperial College Press All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.
For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.
ISBN 1-86094-100-1
Printed in Singapore by Eurasia Press Pte Ltd
For Ann
CONTENTS
xi
PREFACE
...
Xlll
ACKNOWLEDGEMENTS
1. INTRODUCTION 1.1. Surface Roughness 1.1.1. What Causes Roughness? 1.1.2. Why Is Roughness Important? 1.2. Principles of Roughness Measurement 1.2.1. Range and Resolution 1.3. References
2. STYLUS INSTRUMENTS 2.1. Mechanical Instruments 2.2. Electrical Instruments 2.2.1. Stylus and Skid 2.2.2. Transducers 2.2.3. Pickup 2.2.4. Output Recording 2.3. Sources of Error 2.3. I . Effect of Stylus Size 2.3.2. Effect of Stylus Load 2.3.3. Other Sources of Error 2.4. Calibration and Standards 2.5. References
11 11 13 15 16 18 19 20 20 23 25 28 29
3.
35 36 36 37 44 46 47 49
OPTICAL INSTRUMENTS 3.1. Profiling Techniques 3.1.1. Optical Sections 3.1.2. Optical Probes 3.1.3. Interferometers 3.2. Parametric Techniques 3.2.1. Specular Reflectance 3.2.2. Total Integrated Scatter vii
Rough Surfaces
viii
3.3.
3.2.3. Angular Distributions 3.2.4. Direct Fourier Transformation 3.2.5. Ellipsorvietry 3.2.6. Speckle References
50
52 52 54 56
4. OTHER MEASUREMENT TECHNIQUES 4.1. Profiling Methods 4.1.1. Taper Sectioning 4.1.2. Electron Microscopy 4.1.3. Capacitance 4.1.4. Scanning Microscopies 4.2. Parametric Methods 4.2.1. Mechanical Methods 4.2.2. Electrical Methods 4.2.3. Fluid Methods 4.2.4. Acoustic Methods 4.3. References
63 63 63 64 66 68 71 71 77 80 83 84
5.
91 91 95 97 100 102 106
OTHER MEASUREMENT TOPICS 5.1. 3D Measurement 5.2. Relocation 5.3. Replication 5.4. In-Process Measurement 5.4.1. Optical Techniques 5.5. References
6. DATA ACQUISITION AND FILTERING 6.1. Data Acquisition 6.2. Filtering 6.2.1. Envelope Filters 6.3. References
113 113 115 125 130
7. AMPLITUDE PARAMETERS 7.1. Extreme-Value Parameters 7.2. Average Parameters 7.3. The Height Distribution
133 134 138 139
Contents
7.4, 7.5,
Bearing Area References
8. TEXTURE PARAMETERS 8.1, Random Processes 8.2, The Profile as a Random Process 8.3, Practical Computation 8.4. Fractal Roughness 8.5. Re