сжатый вакуумно-дуговой разряд и его применение для нагрева изделий в вакуумных печах отжига и химико-термической обработки

E-Book Overview

Статья в Восточно-Европейский журнал передовых технологий 1/7 ( 37 ) 2009 с.4-8. В работе приведено описание сжатого вакуумно-дугового разряда (СВДР), его характеристики и примеры его использования для нагрева изделий в печах вакуумного отжига и химико-термической обработки. Нагрев изделий производится потоком электронов, ускоренных до энергий 100 – 300 эВ

E-Book Content

Восточно-Европейский журнал передовых технологий 1/7 ( 37 ) 2009 ПРИКЛАДНАЯ ФИЗИКА И МАТЕРИАЛОВЕДЕНИЕ УДК 621793.7 В работе приведено описание сжатого вакуумно-дугового разряда (СВДР), его характеристики и примеры его использования для нагрева изделий в печах вакуумного отжига и химико-термической обработки. Нагрев изделий производится потоком электронов, ускоренных до энергий 100 – 300 эВ СЖАТЫЙ ВАКУУМНОДУГОВОЙ РАЗРЯД И ЕГО ПРИМЕНЕНИЕ ДЛЯ НАГРЕВА ИЗДЕЛИЙ В ВАКУУМНЫХ ПЕЧАХ ОТЖИГА И ХИМИКОТЕРМИЧЕСКОЙ ОБРАБОТКИ Л.П. Саблев* В.М. Шулаев* Р.И. Ступак* А.М. Чикрыжов* *ННЦ ”Харьковский физико-технический институт” ул.Академическая, 1, г.Харьков, Украина 1. Введение В существующих печах вакуумного отжига наиболее часто используется омический нагрев изделий. Поскольку в условиях вакуума передача тепла от нагревателя к изделиям конвекцией, естественно, отсутствует, а в диапазоне температур 20…600 °С весьма неэффективна, то время нагрева относительно велико, а значительное количество энергии, выделяемой нагревателем, расходуется на нагревание стенок камеры, охлаждаемых водой. Подведение энергии непосредственно к обрабатываемым изделиям является наиболее эффективным путём их нагрева, что возможно за счёт использования вакуумно-дугового разряда. Как общеизвестно, в межэлектродном пространстве вакуумной дуги в присутствии газа содержатся 4 электроны, ионы металла и газа, их атомы и молекулы в различной степени возбуждения, т.е. газо-металлическая плазма [1, 2]. Для плазменной обработки изделий в вакууме был создан двухступенчатый вакуумно-дуговой разряд (ДВДР), который представляет собой разряд, в котором положительный столб дуги разделён на две ступени. Первая ступень состоит из газо-металлической плазмы, примыкающей к катоду, а вторая ступень — положительный столб дугового разряда в плазме рабочего газа низкого давления, примыкающая к аноду дугового разряда. [1-4]. Газовая плазма ДВДР может быть использована для целого ряда вакуумно-плазменных процессов, таких как: вакуумный прогрев изделий электронами, азотирование, плазмохимическая обработка, ионная Прикладная физика и материаловедение очистка поверхностей, предшествующая процессу нанесения покрытия и т.п. Однако разряд с размещенными в одном пространстве электродами (анодом и катодом) не обеспечивает высокой степени ионизации рабочего газа. При больших значениях электронного тока в разряде (электронная эмиссия с поверхности катода ограничивается только параметрами внешней цепи и теплофизическими свойствами катода) энергия электронного компонента плазмы в положительном столбе разряда составляет всего несколько электрон-вольт [2]. Такая энергия явно недостаточна для ионизации газовой молекулы прямым электронным ударом (возможна только ступенчатая ионизация газовой молекулы и ионизация в результате перезарядки при ион-молекулярных столкновениях). Повысить энергию электронов за счёт увеличения напряжённости электрического поля в разрядном промежутке не представляется возможным, так как вольтамперная характеристика вакуумно-дугового разряда имеет вид прямой, слабо наклонённой к оси напряжений, в широком интервале значений тока. Увеличить междуэлектродное напряжение возможно с помощью магнитных полей, направленных нормально электрическому полю (скрещенные электрические и магнитные поля). Это вызывает определенные конструктивные затруднения, в силу чего данный способ увеличения энергии электронов не нашёл практического применения в ре
You might also like

Quantum Chemistry
Authors: John P. Lowe , Kirk Peterson    232    0


Electromagnetic Theory And Computation: A Topological Approach
Authors: Paul W. Gross , P. Robert Kotiuga    177    0


A Guide To Monte Carlo Simulations In Statistical Physics
Authors: David P. Landau , Kurt Binder    179    0


Cellular Automata And Other Cellular Systems
Authors: Capcarrere M.    182    0



The Random-cluster Model
Authors: Geoffrey R. Grimmett    240    0


Theoretical Physics Fin De Siecle
Authors: Andrzej Borowiec , Wojciech Cegla , Bernard Jancewicz , Witold Karwowski    149    0


Ettore Majorana, Scientific Papers: On Occasion Of The Centenary Of His Birth
Authors: Giuseppe-Franco Bassani , Società Italiana di Fisica    144    0


Stellar Rotation
Authors: Jean-Louis Tassoul    156    0