E-Book Overview
This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and microstructure investigation techniques. The book presents and discusses the experimental results in detail, and offers suggestions for future research directions.
E-Book Content
SPRINGER BRIEFS IN APPLIED SCIENCES AND TECHNOLOGY POLIMI SPRINGER BRIEFS
Riccardo Casati
Aluminum Matrix Composites Reinforced with Alumina Nanoparticles 123
SpringerBriefs in Applied Sciences and Technology PoliMI SpringerBriefs
Editorial Board Barbara Pernici, Politecnico di Milano, Milano, Italy Stefano Della Torre, Politecnico di Milano, Milano, Italy Bianca M. Colosimo, Politecnico di Milano, Milano, Italy Tiziano Faravelli, Politecnico di Milano, Milano, Italy Roberto Paolucci, Politecnico di Milano, Milano, Italy Silvia Piardi, Politecnico di Milano, Milano, Italy
More information about this series at http://www.springer.com/series/11159 http://www.polimi.it
Riccardo Casati
Aluminum Matrix Composites Reinforced with Alumina Nanoparticles
123
Riccardo Casati Department of Mechanical Engineering Politecnico di Milano Milan Italy
ISSN 2191-530X SpringerBriefs in Applied Sciences ISSN 2282-2577 PoliMI SpringerBriefs ISBN 978-3-319-27731-8 DOI 10.1007/978-3-319-27732-5
ISSN 2191-5318 and Technology ISSN 2282-2585
(electronic) (electronic)
ISBN 978-3-319-27732-5
(eBook)
Library of Congress Control Number: 2015958311 © The Author(s) 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper This Springer imprint is published by SpringerNature The registered company is Springer International Publishing AG Switzerland
Preface
A lot of efforts have been made by the scientific community to create new materials with optimal combinations of prope