E-Book Overview
Contributors: Franzi Korner-Nievergelt, Tobias Roth, Stefanie von Felten, Jérôme Guélat, Bettina Almasi, Pius Korner-Nievergelt
Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking, and multi-model inference, the book also uses effect plots that allow a natural interpretation of data. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN introduces Bayesian software, using R for the simple modes, and flexible Bayesian software (BUGS and Stan) for the more complicated ones. Guiding the ready from easy toward more complex (real) data analyses ina step-by-step manner, the book presents problems and solutions-including all R codes-that are most often applicable to other data and questions, making it an invaluable resource for analyzing a variety of data types.
- Introduces Bayesian data analysis, allowing users to obtain uncertainty measurements easily for any derived parameter of interest
- Written in a step-by-step approach that allows for eased understanding by non-statisticians
- Includes a companion website containing R-code to help users conduct Bayesian data analyses on their own data
- All example data as well as additional functions are provided in the R-package blmeco
E-Book Content
Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan
This page intentionally left blank
Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan
Fra¨nzi Korner-Nievergelt Tobias Roth Stefanie von Felten Je´roˆme Gue´lat Bettina Almasi Pius Korner-Nievergelt
AMSTERDAM l BOSTON l HEIDELBERG l LONDON NEW YORK l OXFORD l PARIS l SAN DIEGO SAN FRANCISCO l SINGAPORE l SYDNEY l TOKYO Academic Press is an imprint of Elsevier
Academic Press is an imprint of Elsevier 32 Jamestown Road, London NW1 7BY, UK 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA 225 Wyman Street, Waltham, MA 02451, USA The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Copyright Ó 2015 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or othe