Fundamentals Of Quantum Mechanics: Solutions Manual


E-Book Content

Solutions Manual Fundamentals of Quantum Mechanics: For Solid State Electronics and Optics C.L. Tang Cornell University Ithaca, N. Y. Cambridge University Press All rights reserved. No part of this book may be reproduced in any form or by any means without explicit permission in writing from the author and the publisher. Chapter 2 2-1. (a) ψ(x) [in units of A] 4 2 −4 −2 0 4 2 x 6 (b) +∞ 1 6 −∞ −4 1 1 = ∫ | Ψ ( x ) | 2 dx = | A | 2 [ ∫ ( 4 + x) 2 dx + ∫ ( 6 − x ) 2 dx ] = ∴ A= (c) 1 5 3 10 = 1 250 | A |2 3 . , by inspection. Next, find σ2 first: 1 6 −4 1 σ 2 = | A |2 [ ∫ ( x − 1) 2 ( 4 + x) 2 dx + ∫ ( x − 1) 2 ( 6 − x) 2 dx ] = therefore, < x="" 2=""> = σ2 + < x="">2 = 7 2 2 - 1 . 5 2 ; (d) The answer to this question is tricky due to the discontinuous change in the slope of the wave function at x = -4, 1, and 6. Taking this into account , < k.="" e.=""> = − 2-2. 2 2 h 3 3h (0 ⋅1−5 ⋅ 2+ 0 ⋅ 1) = 2m 250 50m Given  2  sin(3 πx/a),for 0 < x="">< a="" ψ="" (x="" )="" a="" 0,="" for="" x="" ≤="" 0="" and="" x="" ≥="" a.=""> (a) < h="">=− 2 h 2 2m a ∂ a 2 ∫ sin( 3πx /a) ∂x sin( 3πx /a) dx = 2 0 2 2 9π h 2ma 2 (b)  h2 ∂2  ˆ H sin( 3πx / a ) =  − sin( 3πx / a) = E sin( 3πx / a) 2   2m ∂x  ∴ E = 2 2 9π h 2ma 2 . (c) 9 π 2h −i t 2 2 Ψ ( x , t )= sin( 3πx / a)e 2ma a . (d)
You might also like

Robot Mechanisms And Mechanical Devices Illustrated
Authors: Paul Sandin    209    0


Lessons In Electric Circuits 4 - Digital
Authors: Tony Kuphaldt    152    0


Space-time Calculus
Authors: Hestenes D.    102    0


Cmos Analog Circuit Design
Authors: Allen P.E. , Holberg D.R.    169    0



Foodborne Pathogens: Hazards, Risk Analysis, And Control
Authors: C. W. Blackburn , Clive de W. Blackburn , Peter McClure , P. J. Mcclure    133    0



Physical Metallurgy
Authors: R.W. Cahn , Kazuhiro Hono , P. Haasen    134    0


Capillary Electrophoresis Of Nucleic Acids: Volume Ii: Practical Applications Of Capillary Electrophoresis
Authors: H. Michael Wenz , David Dailey , Martin D. Johnson (auth.) , Keith R. Mitchelson , Jing Cheng (eds.)    136    0