E-Book Overview
Nonholonomic Mechanics and Control develops the rich connections between control theory and geometric mechanics. Control theory is linked with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations and especially with the theory of nonholonomic mechanics (mechanical systems subject to motion constraints). Both controllability and optimal control are treated, including the Pontryagin maximum principle. In addition, the stability, control, and stabilization of mechanical systems are discussed. In particular, these items are considered for nonholonomic systems. The aim of the book is to provide a unified treatment of nonlinear control theory and constrained mechanical systems, incorporating material that has not yet made its way into texts and monographs. Detailed illustrations and exercises are included throughout the text.
This book is intended for graduate and advance undergraduate students in mathematics, physics and engineering who wish to learn this subject and for researchers in the area who want to enhance their techniques.
E-Book Content
Interdisciplinary Applied Mathematics Volume 24 Editors
S.S. Antman J.E. Marsden L. Sirovich S. Wiggins Geophysics and Planetary Sciences Mathematical Biology
L. Glass, J.D. Murray Mechanics and Materials
R.V. Kohn Systems and Control
S.S. Sastry, P.S. Krishnaprasad
Problems in engineering, computational science, and the physical and biological sciences are using increasingly sophisticated mathematical techniques. Thus, the bridge between the mathematical sciences and other disciplines is heavily traveled. The correspondingly increased dialog between the disciplines has led to the establishment of the series: Interdisciplinary Applied Mathematics. The purpose of this series is to meet the current and future needs for the interaction b