Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include electron and photon collisions with atoms, ions and molecules required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.
Springer Series on
atomic, optical, and plasma physics
61
Springer Series on
atomic, optical, and plasma physics The Springer Series on Atomic, Optical, and Plasma Physics covers in a comprehensive manner theory and experiment in the entire field of atoms and molecules and their interaction with electromagnetic radiation. Books in the series provide a rich source of new ideas and techniques with wide applications in fields such as chemistry, materials science, astrophysics, surface science, plasma technology, advanced optics, aeronomy, and engineering. Laser physics is a particular connecting theme that has provided much of the continuing impetus for new developments in the field. The purpose of the series is to cover the gap between standard undergraduate textbooks and the research literature with emphasis on the fundamental ideas, methods, techniques, and results in the field. Please view available titles in Springer Series on Atomic, Optical, and Plasma Physics on series homepage http://www.springer.com/series/411
Philip G. Burke
R-Matrix Theory of Atomic Collisions Application to Atomic, Molecular and Optical Processes
With 110 Figures
123
Professor Philip G. Burke School of Mathematics and Physics David Bates Building Queen’s University Belfast BT7 1NN, UK
[email protected]
Springer Series on Atomic, Optical, and Plasma Physics
ISSN 1615-5653
ISBN 978-3-642-15930-5 e-ISBN 978-3-642-15931-2 DOI 10.1007/978-3-642-15931-2 Springer Heidelberg Dordrecht London New York c Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Integra Software Services Pvt. Ltd., Pondicherry Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)
To my wife Val
Preface
Research on processes which occur when electrons, positrons and photons collide with atoms, ions and molecules has seen a rapid increase in interest, both experimentally and theoretically, in recent years. This is partly because these processes provide an ideal means of investigating the dynamics of many-particle systems at a fundamenta