ансамбли гиббса и неравновесная статистическая механика


E-Book Content

В. В. Козлов АНСАМБЛИ ГИББСА И НЕРАВНОВЕСНАЯ СТАТИСТИЧЕСКАЯ МЕХАНИКА Москва  Ижевск 2008 3 УДК 531.19 http://shop.rcd.ru http://ics.org.ru Интернет-магазин • физика • математика • биология http://shop.rcd.ru • нефтегазовые технологии Козлов В. В. Ансамбли Гиббса и неравновесная статистическая механика. — Москва–Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2008. — 204 с. В рамках теории ансамблей Гиббса развивается последовательная неравновесная статистическая механика. В ее основе лежит идея слабых пределов решений уравнения Лиувилля при неограниченном возрастании времени. С ее помощью естественным образом решается задача о переходе к макроописанию, когда основное внимание сосредоточено на изучении эволюции средних значений (математических ожиданий) динамических величин. Этот подход отличается от традиционных подходов к проблеме необратимости, поскольку равновесные состояния динамических систем в прошлом и будущем совпадают. Результаты общего характера применяются к решению конкретных задач классической статистической механики. Книга предназначена для математиков, механиков и физиков, интересующихся статистической механикой и вопросами обоснования термодинамики. ISBN 978-5-93972-645-0 c В. В. Козлов, 2008  c НИЦ «Регулярная и хаотическая динамика», 2008  Оглавление «Среди самых интересных проблем математической физики особое место следует отвести проблемам, связанным с кинетической теорией газа. Многое уже сделано для решения, но многое еще остается сделать. Эта теория представляет вечный пара- Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 § 1. Ансамбли Гиббса и тепловое равновесие . . . . . . 11 § 2. Неавтономные системы . . . . . . . . . . . . . . . . 28 § 3. Равнораспределенность энергии связанных осцилляторов . . . . . . . . . . . . . . . . . . . . . . . . . 40 § 4. Тонкая и грубая энтропии . . . . . . . . . . . . . . . 53 § 5. Одномерный идеальный газ . . . . . . . . . . . . . 68 § 6. Статистическая механика в конфигурационном пространстве . . . . . . . . . . . . . . . . . . . . . . . . 75 § 7. Бесстолкновительный газ в многогранниках . . . . 86 § 8. Статистическое равновесие в системах с медленно меняющимися параметрами . . . . . . . . . . . . . 98 § 9. Случай быстрых изменений . . . . . . . . . . . . . 110 § 10. Некоторые неравенства для решений уравнения Лиувилля . . . . . . . . . . . . . . . . . . . . . . . . 119 § 11. Циклы Пуанкаре . . . . . . . . . . . . . . . . . . . . 125 § 12. Задача о поршне . . . . . . . . . . . . . . . . . . . . 137 § 13. Термодинамика биллиардов и газ Больцмана–Гиббса 153 § 14. Статистические модели термостата . . . . . . . . . 171 § 15. Обобщенное каноническое уравнение Власова . . . 181 Литература . . . . . . . . . . . . . . . . . . . . . . . . . . 195 докс. Мы имеем обратимость в предпосылках и необратимость в следствиях, и между ними — пропасть». А. Пуанкаре «Настоящее и будущее математической физики.» Введение Статистическая механика — это механика, обогащенная вероятностными представлениями. Основная задача неравновесной статистической механики — анализ механизма необратимого стремления системы к состоянию термодинамического равновесия. Неравновесная статистическая механика была предметом классических работ Больцмана и Гиббса. Предложенные ими подходы существенно отличаются друг от друга. Больцман исследовал статистические свойства системы сталкивающихся частиц в обычном трехмерном пространстве, вывел ставшее знаменитым кинетическое уравнение для плотности распределения по скоростям и координатам (в µ-пространстве) и показал, что в общем случае решения этого уравнения стремятся 6 В ВЕДЕНИЕ В ВЕДЕНИЕ при t → +∞ к распределению Максвелла. Возникающий при пути решения э
You might also like

Quantum Information: An Introduction To Basic Theoretical Concepts And Experiments
Authors: Gernot Alber , Thomas Beth , Michał Horodecki , Paweł Horodecki , Ryszard Horodecki , Martin Rötteler , Harald Weinfurter , Reinhard Werner , Anton Zeilinger (auth.)    248    0


Boundary Methods: Elements, Contours, And Nodes
Authors: Subrata Mukherjee , Yu Xie Mukherjee    230    0


Modeling And Computations In Electromagnetics: A Volume Dedicated To Jean-claude Nédélec
Authors: R. Hiptmair , P. Meury (auth.) , Habib Ammari (eds.)    194    0


Vortices In Bose—einstein Condensates
Authors: Amandine Aftalion (auth.)    193    0


The Random-cluster Model
Authors: Geoffrey R. Grimmett    244    0


Quantum Finance: Path Integrals And Hamiltonians For Options
Authors: Belal E. Baaquie    129    0



Extrasolar Planets: Xvi Canary Islands Winter School Of Astrophysics
Authors: Deeg , Belmonte , Aparicio. (eds.)    125    0


Reviews In Modern Astronomy
Authors: Siegfried Röser    139    0


Fitness Of The Cosmos For Life: Biochemistry And Fine-tuning
Authors: John Barrow , Simon Conway Morris , Stephen Freeland , Charles Harper    143    0