ансамбли гиббса и неравновесная статистическая механика


E-Book Content

В. В. Козлов АНСАМБЛИ ГИББСА И НЕРАВНОВЕСНАЯ СТАТИСТИЧЕСКАЯ МЕХАНИКА Москва  Ижевск 2008 3 УДК 531.19 http://shop.rcd.ru http://ics.org.ru Интернет-магазин • физика • математика • биология http://shop.rcd.ru • нефтегазовые технологии Козлов В. В. Ансамбли Гиббса и неравновесная статистическая механика. — Москва–Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2008. — 204 с. В рамках теории ансамблей Гиббса развивается последовательная неравновесная статистическая механика. В ее основе лежит идея слабых пределов решений уравнения Лиувилля при неограниченном возрастании времени. С ее помощью естественным образом решается задача о переходе к макроописанию, когда основное внимание сосредоточено на изучении эволюции средних значений (математических ожиданий) динамических величин. Этот подход отличается от традиционных подходов к проблеме необратимости, поскольку равновесные состояния динамических систем в прошлом и будущем совпадают. Результаты общего характера применяются к решению конкретных задач классической статистической механики. Книга предназначена для математиков, механиков и физиков, интересующихся статистической механикой и вопросами обоснования термодинамики. ISBN 978-5-93972-645-0 c В. В. Козлов, 2008  c НИЦ «Регулярная и хаотическая динамика», 2008  Оглавление «Среди самых интересных проблем математической физики особое место следует отвести проблемам, связанным с кинетической теорией газа. Многое уже сделано для решения, но многое еще остается сделать. Эта теория представляет вечный пара- Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 § 1. Ансамбли Гиббса и тепловое равновесие . . . . . . 11 § 2. Неавтономные системы . . . . . . . . . . . . . . . . 28 § 3. Равнораспределенность энергии связанных осцилляторов . . . . . . . . . . . . . . . . . . . . . . . . . 40 § 4. Тонкая и грубая энтропии . . . . . . . . . . . . . . . 53 § 5. Одномерный идеальный газ . . . . . . . . . . . . . 68 § 6. Статистическая механика в конфигурационном пространстве . . . . . . . . . . . . . . . . . . . . . . . . 75 § 7. Бесстолкновительный газ в многогранниках . . . . 86 § 8. Статистическое равновесие в системах с медленно меняющимися параметрами . . . . . . . . . . . . . 98 § 9. Случай быстрых изменений . . . . . . . . . . . . . 110 § 10. Некоторые неравенства для решений уравнения Лиувилля . . . . . . . . . . . . . . . . . . . . . . . . 119 § 11. Циклы Пуанкаре . . . . . . . . . . . . . . . . . . . . 125 § 12. Задача о поршне . . . . . . . . . . . . . . . . . . . . 137 § 13. Термодинамика биллиардов и газ Больцмана–Гиббса 153 § 14. Статистические модели термостата . . . . . . . . . 171 § 15. Обобщенное каноническое уравнение Власова . . . 181 Литература . . . . . . . . . . . . . . . . . . . . . . . . . . 195 докс. Мы имеем обратимость в предпосылках и необратимость в следствиях, и между ними — пропасть». А. Пуанкаре «Настоящее и будущее математической физики.» Введение Статистическая механика — это механика, обогащенная вероятностными представлениями. Основная задача неравновесной статистической механики — анализ механизма необратимого стремления системы к состоянию термодинамического равновесия. Неравновесная статистическая механика была предметом классических работ Больцмана и Гиббса. Предложенные ими подходы существенно отличаются друг от друга. Больцман исследовал статистические свойства системы сталкивающихся частиц в обычном трехмерном пространстве, вывел ставшее знаменитым кинетическое уравнение для плотности распределения по скоростям и координатам (в µ-пространстве) и показал, что в общем случае решения этого уравнения стремятся 6 В ВЕДЕНИЕ В ВЕДЕНИЕ при t → +∞ к распределению Максвелла. Возникающий при пути решения э
You might also like

Electromagnetic Theory And Computation: A Topological Approach
Authors: Paul W. Gross , P. Robert Kotiuga    170    0


Introduction To Computational Plasticity
Authors: Fionn Dunne , Nik Petrinic    204    0


Simulating Hamiltonian Dynamics
Authors: Benedict Leimkuhler , Sebastian Reich    141    0


Cellular Automata And Other Cellular Systems
Authors: Capcarrere M.    176    0


Non-linear Dynamics And Fundamental Interactions
Authors: Faqir Khanna , Davron Matrasulov    172    0


Supersymmetry In Quantum And Classical Mechanics
Authors: Bijan Kumar Bagchi    153    0


Semiclassical Dynamics And Relaxation
Authors: D.S.F. Crothers (auth.)    355    0


Particle Accelerator Physics
Authors: H. Wiedemann    149    0