The Dynamics Of Heat: A Unified Approach To Thermodynamics And Heat Transfer

E-Book Overview

Based on courses for students of science, engineering, and systems science at the Zurich University of Applied Sciences at Winterthur, this text approaches the fundamentals of thermodynamics from the point of view of continuum physics. By describing physical processes in terms of the flow and balance of physical quantities, the author achieves a unified approach to hydraulics, electricity, mechanics and thermodynamics. In this way, it becomes clear that entropy is the fundamental property that is transported in thermal processes (i.e., heat), and that temperature is the corresponding potential. The resulting theory of the creation, flow, and balance of entropy provides the foundation of a dynamical theory of heat.

This extensively revised and updated second edition includes new material on dynamical chemical processes, thermoelectricity, and explicit dynamical modeling of thermal and chemical processes. To make the book more useful for courses on thermodynamics and physical chemistry at different levels, coverage of topics is divided into introductory and more advanced and formal treatments. Previous knowledge of thermodynamics is not required, but the reader should be familiar with basic electricity, mechanics, and chemistry and should have some knowledge of elementary calculus. The special feature of the first edition – the integration of thermodynamics, heat transfer, and chemical processes – has been maintained and strengthened.

Key Features:

  • Presents a unified approach to thermodynamics and heat transport in fundamental physical and chemical processes
  • First revised edition of a successful text/reference in fourteen years
  • More than 25 percent new material
  • Provides worked examples, questions, and problem sets for use as a teaching text or for self testing
  • Includes many system dynamics models of laboratory experiments


E-Book Content

The Dynamics of Heat GRADUATE TEXTS IN PHYSICS Graduate Texts in Physics publishes core learning/teaching material for graduate- and advanced-level undergraduate courses on topics of current and emerging fields within physics, both pure and applied. These textbooks serve students at the MS- or PhD-level and their instructors as comprehensive sources of principles, definitions, derivations, experiments and applications (as relevant) for their mastery and teaching, respectively. International in scope and relevance, the textbooks correspond to course syllabi sufficiently to serve as required reading. Their didactic style, comprehensiveness and coverage of fundamental material also make them suitable as introductions or references for scientists entering, or requiring timely knowledge of, a research field. Series Editors Professor Richard Needs Cavendish Laboratory JJ Thomson Avenue Cambridge CB3 0HE, UK E-mail: [email protected] Professor William T. Rhodes Florida Atlantic University Imaging Technology Center Department of Electrical Engineering 777 Glades Road SE, Room 456 Boca Raton, FL 33431, USA E-mail: [email protected] Professor H. Eugene Stanley Boston University Center for Polymer Studies Department of Physics 590 Commonwealth Avenue, Room 204B Boston, MA 02215, USA E-mail: [email protected] Hans U. Fuchs The Dynamics of Heat A Unified Approach to Thermodynamics and Heat Transfer 123 Hans U. Fuchs Zurich University of Applied Sciences at Winterthur Technikumstrasse 9 8401 Winterthur Switzerland