Principles Of Snow Hydrology

E-Book Overview

Originally published in 2008, Principles of Snow Hydrology describes the factors that control the accumulation, melting and runoff of water from seasonal snowpacks over the surface of the earth. The book addresses not only the basic principles governing snow in the hydrologic cycle, but also the latest applications of remote sensing, and techniques for modeling streamflow from snowmelt across large mixed land-use river basins. Individual chapters are devoted to climatology and distribution of snow, snowpack energy exchange, snow chemistry, ground-based measurements and remote sensing of snowpack characteristics, snowpack management, and modeling snowmelt runoff. Many chapters have review questions and problems with solutions available online. This book is a reference book for practicing water resources managers and a text for advanced hydrology and water resources courses which span fields such as engineering, earth sciences, meteorology, biogeochemistry, forestry and range management, and water resources planning.

E-Book Content

This page intentionally left blank PR IN C IPLES O F SN OW HYDROLOGY Snow hydrology is a specialized field of hydrology that is of particular importance for high latitudes and mountainous terrain. In many parts of the world, river and groundwater supplies for domestic, irrigation, industrial, and ecosystem needs are generated from snowmelt, and an in-depth understanding of snow hydrology is of clear importance. Study of the impacts of global warming has also stimulated interest in snow hydrology because increased air temperatures are projected to have major impacts on the snow hydrology of cold regions. Principles of Snow Hydrology describes the factors that control the accumulation, melting, and runoff of water from seasonal snowpacks over the surface of the earth. The book addresses not only the basic principles governing snow in the hydrologic cycle, but also the latest applications of remote sensing, and principles applicable to modelling streamflow from snowmelt across large, mixed landuse river basins. Individual chapters are devoted to climatology and distribution of snow, ground-based measurements and remote sensing of snowpack characteristics, snowpack energy exchange, snow chemistry, modelling snowmelt runoff (including the SRM model developed by Rango and others), and principles of snowpack management on urban, agricultural, forest, and range lands. There are lists of terms, review questions, and problems with solutions for many chapters available online at www.cambridge.org/9780521823623. This book is invaluable for all those needing an in-depth knowledge of snow hydrology. It is a reference book for practising water resources managers and a textbook for advanced hydrology and water resources courses which span fields such as engineering, Earth sciences, meteorology, biogeochemistry, forestry and range management, and water resources planning. Dav id R. D e Walle is a Professor of Forest Hydrology with the School of Forest Resources at the Pennsylvania State University, and is also Director of the Pennsylvania Water Resources Research Center. He received his BS and MS degrees in forestry from the University of Missouri, and his PhD in watershed management from Colorado State University. DeWalle has conducted research on the impacts of atmospheric deposition, urbanization, forest harvesting, and climate change on the hydrology and health of watersheds in Pennsylvania. He regularly teaches courses in watershed management, snow hydrology, and forest microclimatology. In addition to holding numerous administrative positions at Penn State, such as Associate Director of the Institutes of the Environment and Forest Science Program Chair, DeWalle has been major advisor to over 50 MS and PhD students since coming to Penn State in 1969. DeWalle has also been a visiting scientist with t