Electromagnetic Interactions And Hadronic Structure (cambridge Monographs On Particle Physics, Nuclear Physics And Cosmology)

E-Book Overview

The distribution of quarks within protons and neutrons, their interactions, and how they define the properties of protons, neutrons and nuclei, are subjects of major research worldwide. Written by leading experts in the field, both theoretical and experimental, this book provides an authoritative overview on the subject. The emphasis throughout the book is on phenomenology, and the book concentrates on describing the main features of the experimental data and the theoretical ideas used in their interpretation. Sections on chiral perturbation theory, crucial in understanding soft pions and soft photons near threshold, and duality ideas, equally crucial at intermediate energies, are included. This is an essential reference for graduate students and researchers in the field of particle physics and electromagnetic interactions.

E-Book Content

This page intentionally left blank ELECTROMAGNETIC INTERACTIONS AND HADRONIC STRUCTURE The nuclei of atoms are constructed from protons and neutrons that, in turn, are constructed from more fundamental particles: quarks. The distribution of quarks within protons and neutrons, their interactions, and how they define the properties of protons and neutrons, and hence nuclei, are subjects of major research worldwide. This study requires the use of beams of high-energy electrons. Understanding of proton structure at high energies has been greatly expanded by the study of generalized parton distributions and of nucleon spin structure. Photons can separate the roles of quark and gluonic degrees of freedom within hadrons and hence filter glueballs and hybrid mesons. At high energies, both photon and nucleon structure can be probed. The former manifests itself in diffractive photoprocesses, where there is a uniquely rich interplay between perturbative and non-perturbative effects. This book provides an authoritative overview on the subject, and sections on chiral perturbation theory, crucial in understanding soft pions and soft photons near threshold, and duality ideas, equally crucial at intermediate energies, are included. The emphasis throughout the book is on phenomenology, and the book concentrates on describing the main features of the experimental data and the theoretical ideas used in their interpretation. Written by leading experts in the field, both theoretical and experimental, this is an essential reference for graduate students and researchers in the field of particle physics and electromagnetic interactions. F r a n k C l o s e is Professor of Physics at the Rudolph Peierls Centre for Theoretical Physics, Oxford University. He gained a D.Phil at Oxford University, and has worked at Stanford Linear Accelerator Center (SLAC), CERN, and the Rutherford Appleton Laboratory. Professor Close has been awarded the Kelvin Medal from the Institute of Physics and is the author of many books aimed at both a professional and a lay audience, most recently The New Cosmic Onion (Taylor & Francis, 2006). S a n d y D o n n a c h i e is Honorary Research Professor in the School of Physics and Astronomy at the University of Manchester. Since gaining his Ph.D. from the University of Glasgow, Professor Donnachie has held positions at the University College London, CERN, the University of Glasgow and Daresbury National Laboratory. He was awarded the Glazebrook Medal from the Institute of Physics and was co-author of Pomeron Physics and QCD (Cambridge University Press 2002). G r a h a m S h aw is a senior lecturer in the School of Physics and Astronomy at the University of Manchester. He gained his Ph.D. from the University of London. He has held positions at the Rutherford Laboratory, Daresbury National Laboratory and Columbia University. His many books include the well-known texts on Quantum Field Theory and Particle Physics (Wiley, latest editions 1993 and 1997). CAMBRIDGE MONOGRAPHS ON
You might also like

Handbook Of Engineering Electromagnetics
Authors: Rajeev Bansal    118    0




Ultrafast Lasers: Technology And Applications
Authors: Martin E. Fermann , Almantas Galvanauskas , Gregg Sucha    161    0



Physical Problems Solved By The Phase-integral Method
Authors: Nanny Fröman , Per Olof Fröman    166    0


Poisson Structures And Their Normal Forms
Authors: Jean-Paul Dufour , Nguyen Tien Zung (auth.) , H. Bass , J. Oesterlé , A. Weinstein (eds.)    202    0




Ettore Majorana, Scientific Papers: On Occasion Of The Centenary Of His Birth
Authors: Giuseppe-Franco Bassani , Società Italiana di Fisica    141    0