E-Book Content
Advances in Applied Mechanics Volume 21
Editorial Board T. BROOKE BENJAMIN Y. C. FUNG PAULGERM” HILL RODNEY L. HOWARTH T. Y. Wu
Contributors to Volume 21 B. L. N. KENNETT L. J . WALPOLE J . R. WILLIS
AD VANCES I N
APPLIED MECHANICS Edited by Chia-Shun Yih DEPARTMENT OF MECHANICAL ENGINEERING AND APPLIED MECHANICS THE UNIVERSITY OF MICHIGAN ANN ARBOR, MICHIGAN
VOLUME 21
1981
ACADEMIC PRESS A Subsidiary of Harcourt Brace Jovanovich, Publishers
New York
London
Toronto
Sydney
San Francisco
COPYRIGHT @ 1981, BY ACADEMIC PRESS,INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STOR4GE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER.
ACADEMIC PRESS, INC. 111 Fifth Avenue, New York.
New York 10003
United Kingdom Edition published by ACADEMIC PRESS, INC. ( L O N D O N ) LTD.
2 4 / 2 8 Oval Road,
London N W 1 7 D X
LIBRARY OF CONGRESS CATALOG CARD NUMBER:48-8503 ISBN 0-12-002021-1 PRINTED IN THE UNITED STATES O F AMERICA 81 82 83 84
9 8 7 6 5 4 3 2 1
Contents vii
LISTOF CONTRIBUTORS
Variational and Related Methods for the Overall Properties of Composites J . R . Willis I. Introduction 11. 111. IV. V. VI. VII. VIII.
Preliminary Definitions Methods Related to the Classical Variational Principles Methods Related to the Hashin-Shtrikman Variational Principle Self-consistent Estimates Generalizations Problems Which Lack Convergence Wave Propagation IX . Recent Developments References
2 3 13 23 42 47 55
64 74 74
Elastic Wave Propagation in Stratified Media B. L. N . Kennett I. Introduction 11. Elastic Waves in Stratified Regions 111. Reflection and Transmission of Elastic Waves
IV. Half-Space Response in Terms of Reflection Matrices V. Inversion of the Transforms VI. Conclusion References
80 83 100
127 152 163 164
Elastic Behavior of Composite Materials: Theoretical Foundations L . J . Walpole 1. Introduction 11. Preliminary Analysis of Tensors and Elastic Behavior V
169 171
vi 111. The Elastic Field of an Inclusion IV. The Elastic Field of a Composite Body V. The Overall Elastic Behavior of a Composite Body References
Contents 188 202 208 236
AUTHORINDEX
243
SUBJECT INDEX
241
List of Contributors
Numbers in parentheses indicate the pages on which the authors’ contributions begin.
B. L. N. KENNETT,Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 9EW, England (79) L. J. WALPOLE, School of Mathematics and Physics, University of East Anglia, Norwich NR4 7TJ, England (169) J. R. WILUS,School of Mathematics, University of Bath, Bath BA2 7AY,
England (1)
vii
This Page Intentionally Left Blank
ADVANCES IN APPLIED MECHANICS. VOLUME
21
Variational and Related Methods for the Overall Properties of Composites J . R . WILLIS School of Mathematics University of Bath Bath. England
I . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I1. Preliminary Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Types of Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Definitions of Overall Properties . . . . . . . . . . . . . . . . . . . . . . . . . .
2
3 3 1
I11. Methods Related to the Classical Variational Principles . . . . . . . . . . . . . . . A. Small Variations in Moduli . . . . . . . . . . . . . . . . . . . . . . . . . . .