E-Book Overview
Horizontal gene transfer is a major driving force in the evolution of many bacterial pathogens. The development of high-throughput sequencing tools and more sophisticated genomic and proteomic techniques in recent years has resulted in a better understanding of this phenomenon. Written by leading experts in the field, this edited volume is aimed at graduate students and researchers and provides an overview of current knowledge relating to the evolution of microbial pathogenicity. This volume provides an overview of the mechanisms and biological consequences of the genome rearrangements resulting from horizontal gene transfer, in both prokaryotes and eukaryotes, as well as overviews of the key mobile genetic elements involved. Subsequent chapters focus on paradigms for the evolution of important bacterial pathogens, including Salmonella enterica, Streptococcus pneumoniae, and Staphylococcus aureus. The influence of socioeconomic parameters in the dissemination of transferable elements, such as antibiotic resistant genes in bacteria is also discussed.
E-Book Content
P1: JZP manual cuus117 978 0 521 86297 4
Top Margin: 0.90625in Gutter Margin: 0.79034in May 23, 2008 17:36
This page intentionally left blank
ii
P1: JZP manual cuus117 978 0 521 86297 4
Top Margin: 0.90625in Gutter Margin: 0.79034in May 23, 2008 17:36
Horizontal Gene Transfer in the Evolution of Pathogenesis Horizontal gene transfer is a major driving force in the evolution of many bacterial pathogens. The development of high-throughput sequencing tools and more sophisticated genomic and proteomic techniques in recent years has resulted in a better understanding of this phenomenon. Written by leading experts in the field, this edited volume is aimed at graduate students and researchers and provides an overview of current knowledge relating to the evolution of microbial pathogenicity. This volume provides an overview of the mechanisms and biological consequences of the genome rearrangements resulting from horizontal gene transfer, in both prokaryotes and eukaryotes, as well as overviews of the key mobile genetic elements involved. Subsequent chapters focus on paradigms for the evolution of important bacterial pathogens, including Salmonella enterica, Streptococcus pneumoniae, and Staphylococcus aureus. The influence of socioeconomic parameters in the dissemination of transferable elements, such as antibiotic-resistant genes in bacteria, is also discussed. Michael Hensel is currently Professor of Microbiology and Immunology at the University of Erlangen in Germany. Herbert Schmidt is currently Professor of Food Microbiology at the University of Hohenheim in Germany.
i
P1: JZP manual cuus117 978 0 521 86297 4
Top Margin: 0.90625in Gutter Margin: 0.79034in May 23, 2008 17:36
ii
CELLULAR MICROBIOLOGY
P1: JZP manual cuus117 978 0 521 86297 4
Top Margin: 0.90625in Gutter Margin: 0.79034in May 23, 2008 17:36
Over the past decade, the rapid development of an array of techniques in the fields of cellular and molecular biology has transformed whole areas of research across the biological sciences. Microbiology has perhaps been influenced most of all. Our understanding of microbial diversity and evolutionary biology and of how pathogenic bacteria and viruses interact with their animal and plant hosts at the molecular level, for example, has been revolutionized. Perhaps the most exciting recent advance in microbiology is the fusion of classical microbiology, microbial molecular biology, and eukaryotic cellular microbiology. Cellular microbiology is revealing how pathogenic bacteria interact with host cells in what is turning out to be a complex evolutionary battle of competing gene products. Molecular and cellular biology are no longer discrete subject areas b