E-Book Content
Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann Series: California Institute of Technology, Pasadena Adviser: C. R. DePrima
593 IIIIII IIIIIIIIIIIII
Klaus Barbey Heinz KSnig
Abstract Analytic Function Theory and Hardy Algebras III II
I IIIII III Inllll
I
Springer-Verlag Berlin-Heidelberq • New York 1977
II
II III I
Authors Klaus Barbey Fachbereich Mathematik UniversitAt Regensburg U niversit~tsstraBe 31 8400 Regensburg/BRD Heinz K6nig Fachbereich Mathematik Universit~t des Saarlandes 6 6 0 0 SaarbdJcken/BRD
AMS Subject Classifications (1970): 46J 10, 46J 15
ISBN 3-540-08252-2 Springer-Verlag Berlin • Heidelberg • New York ISBN 0-38?-08252-2 Springer-Verlag New York • Heidelberg • Berlin This work is subiect to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin • Heidelberg 1977 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2141/3140-543210
Preface
The p r e s e n t work w a n t s tional-analytic
theory.
classical analytic
It is an a b s t r a c t v e r s i o n of those parts of
f u n c t i o n t h e o r y w h i c h can be c i r c u m s c r i b e d by b o u n d a r y
v a l u e t h e o r y and Hardy the
to be the s y s t e m a t i c p r e s e n t a t i o n of a func-
spaces H p. The f a s c i n a t i o n of the field comes from
fact that famous