E-Book Overview
Synchrotron radiation is an important research tool for many areas of particle physics. This book explains the underlying physics which determines radiation properties, presenting these properties in easily applicable equations and figures. It describes the general radiation and its interaction with electrons and is a valuable reference for scientists in the field.
E-Book Content
This page intentionally left blank THE PHYSICS OF SYNCHROTRON RADIATION This book explains the underlying physics of synchrotron radiation and derives its main properties. It is divided into four parts. The first covers the general case of the electromagnetic fields created by an accelerated relativistic charge. The second part concentrates on the radiation emitted by a charge moving on a circular trajectory, deriving its distribution in angle, frequency, and polarization modes. The third part looks at undulator radiation. Starting from the simple case of a plane weak undulator with a spatially periodic field that emits quasi-monochromatic radiation, the author then discusses strong undulators, emitting more complicated radiation and containing higher harmonics. More general undulators are also considered, with a non-planar (helical) electron trajectory or non-harmonic field. The final part deals with applications and investigates the optics of synchrotron radiation dominated by diffraction due to the small opening angle. It also includes a description of electron-storage rings as radiation sources and the effect of the emitted radiation on the electron beam. This book provides a valuable reference for scientists and engineers in the field of accelerators, and for all users of synchrotron radiation. alb e r t h o f m a n n received his doctorate in physics from the ETH (Swiss Federal Institute of Technology) in Z¨urich in 1964. From 1966 to 1972 he was a Research Fellow at the Cambridge Electron