Physical And Chemical Equilibrium For Chemical Engineers

Preparing link to download Please wait... Download

E-Book Overview

"New to this edition is an appendix covering the Bridgman table which includes a basic set of thermodynamic equations Has a new chapter on the thermodynamics of biochemical reactions Updates naming and notation used in the first edition; where the first edition used the traditional names for the Gibbs Free Energy and for Partial Molal Properties, this edition uses the more popular Gibbs Energy and Partial Molar Properties Teaches Physical and chemical equilibrium which deals with calculating the thermodynamic properties for mixtures. Includes many problems in the text to help the reader understand the material covered and includes a solutions manual to these problems"--  Read more... Preface xiii About the Author xv Nomenclature xvii 1 Introduction to Equilibrium 1 1.1 Why Study Equilibrium?, 1 1.2 Stability and Equilibrium, 4 1.3 Time Scales and the Approach to Equilibrium, 5 1.4 Looking Ahead, Gibbs Energy, 5 1.5 Units, Conversion Factors, and Notation, 6 1.6 Reality and Equations, 8 1.7 Phases and Phase Diagrams, 8 1.8 The Plan of this Book, 10 1.9 Summary, 10 References, 11 2 Basic Thermodynamics 13 2.1 Conservation and Accounting, 13 2.2 Conservation of Mass, 14 2.3 Conservation of Energy; the First Law of Thermodynamics, 15 2.4 The Second Law of Thermodynamics, 17 2.4.1 Reversibility, 17 2.4.2 Entropy, 18 2.5 Convenience Properties, 19 2.6 Using the First and Second Laws, 19 2.7 Datums and Reference States, 21 2.8 Measurable and Immeasurable Properties, 22 2.9 Work and Heat, 22 2.10 The Property Equation, 23 2.11 Equations of State (EOS), 24 2.11.1 EOSs Based on Theory, 25 2.11.2 EOSs Based on Pure Data Fitting, 25 2.12 Corresponding States, 26 2.13 Departure Functions, 28 2.14 The Properties of Mixtures, 28 2.15 The Combined First and Second Law Statement; Reversible Work, 29 2.16 Summary, 31 References, 33 3 The Simplest Phase Equilibrium Examples and Some Simple Estimating Rules 35 3.1 Some General Statements About Equilibrium, 35 3.2 The Simplest Example of Phase Equilibrium, 37 3.2.1 A Digression, the Distinction between Vapor and Gas, 37 3.2.2 Back to the Simplest Equilibrium, 37 3.3 The Next Level of Complexity in Phase Equilibrium, 37 3.4 Some Simple Estimating Rules: Raoult's and Henry's "Laws", 39 3.5 The General Two-Phase Equilibrium Calculation, 43 3.6 Some Simple Applications of Raoult's and Henry's Laws, 43 3.7 The Uses and Limits of Raoult's and Henry's Laws, 46 3.8 Summary, 46 References, 48 4 Minimization of Gibbs Energy 49 4.1 The Fundamental Thermodynamic Criterion of Phase and Chemical Equilibrium, 49 4.2 The Criterion of Equilibrium Applied to Two Nonreacting Equilibrium Phases, 51 4.3 The Criterion of Equilibrium Applied to Chemical Reactions, 53 4.4 Simple Gibbs Energy Diagrams, 54 4.4.1 Comparison with Enthalpy and Entropy, 55 4.4.2 Gibbs Energy Diagrams for Pressure-Driven Phase Changes, 55 4.4.3 Gibbs Energy Diagrams for Chemical Reactions, 57 4.5 Le Chatelier's Principle, 58 4.6 Summary, 58 References, 60 5 Vapor Pressure, the Clapeyron Equation, and Single Pure Chemical Species Phase Equilibrium 61 5.1 Measurement of Vapor Pressure, 61 5.2 Reporting Vapor-Pressure Data, 61 5.2.1 Normal Boiling Point (NBP), 61 5.3 The Clapeyron Equation, 62 5.4 The Clausius-Clapeyron Equation, 63 5.5 The Accentric Factor, 64 5.6 The Antoine Equation and Other Data-Fitting Equations, 66 5.6.1 Choosing a Vapor-Pressure Equation, 67 5.7 Applying the Clapeyron Equation to Other Kinds of Equilibrium, 67 5.8 Extrapolating Vapor-Pressure Curves, 68 5.9 Vapor Pressure of Solids, 69 5.10 Vapor Pressures of Mixtures, 69 5.11 Summary, 69 References, 72 6 Partial Molar Properties 73 6.1 Partial Molar Properties, 73 6.2 The Partial Molar Equation, 74 6.3 Tangent Slopes, 74 6.4 Tangent Intercepts, 77 6.5 The Two Equations for Partial Molar Properties, 78 6.6 Using the Idea of Tangent Intercepts, 79 6.7 Partial Mass Properties, 80 6.8 Heats of Mixing and Partial Molar Enthalpie